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ABSTRACT 

Detailed soil and water data are essential to ensure the optimum long-term management 

of fields. The objective of this study was to estimate water table depths, spatially variable 

and layered soil properties using electromagnetic induction methods. Soil samples were 

collected and analyzed within two wild blueberry, a soybean-barley and a pasture fields. 

Observation wells were installed. The DualEM-2 was calibrated to predict the soil 

properties and groundwater depths. The apparent ground conductivity (ECa) and water 

table depths were measured simultaneously from each well, before and after every 

significant rainfall for three consecutive days. Comprehensive surveys were conducted in 

selected fields to measure ECa with DualEM-2. Survey data were imported in C++ 

program to estimate layered soil properties using mathematical models. Regression 

models were developed to predict soil properties and groundwater depths. The predicted 

soil properties and groundwater table maps were generated. This information can help to 

develop variable rate technologies. 
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CHAPTER 1  INTRODUCTION 

One of the fundamental deficiencies in many agriculture production systems is the lack of 

detailed, up-to-date and pertinent geo-referenced soil and water information. Detailed 

spatial soil and water data are essential to ensure the optimum long-term management 

(fertility, irrigation, drainage) and sustainability of fields and associated agricultural crops 

(Schumann and Zaman, 2003). 

Continuous measurement of soil properties as well as water status is expensive, time 

consuming and difficult. These measurements generally involve in-situ characterization 

and/or collection of soil profile sampling as well as determination of water table depths 

followed by considerable laboratory analysis.  

Electromagnetic induction (EMI) is a technique that measures the apparent ground 

conductivity (ECa) by inducing and then detecting an electrical current in the soil (Saey et 

al., 2009). The EMI instruments are cost-effective and are gaining wider use due to their 

non-destructive nature, rapid response, and ease of integration into a mobile platform, 

from which real-time measurements can be made (McNeill, 1980a; Hendrickx and 

Kachanoski, 2002; Abdu et al., 2007; Farooque et al., 2012). These instruments can be 

utilized to measure and map field-scale soil properties including soil moisture content 

(Kachanoski et al., 1988), soil texture (Williams and Hoey, 1987; Kitchen et al., 1999; 

Sudduth et al., 2005), soil nutrient status (Johnson et al., 2003; Corwin, 2005), water 

table depths (Schumann and Zaman, 2003), and the presence of restrictive soil layers 

(Doolittle et al., 1994). The EMI instruments can also provide information about subsoil 

properties at a range of depths that are important to plant growth, which makes ECa 

unique for site-specific management because other methods of assessing soil properties 
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such as remote sensing and topographical information cannot directly provide 

information on subsoil properties (Kravchenko et al., 2003). 

Specific field maps delineating water table depths as well as soil physical and chemical 

properties can be utilized to support several field management systems.  Different 

management zones can be developed on the basis of variation in ECa, coupled with the 

Geographic Information System (GIS), for the site-specific application of suitable 

fertilization, supplemental irrigation and its scheduling, and drainage design to reduce 

input costs and environmental impacts, and to increase productivity.  

Ground conductivity measuring devices provide the simplest and least expensive 

measurement of soil variability (Farahani and Buchleiter, 2004). Among these 

instruments, the DualEM has been the primary instrument of choice for soil quality and 

site-specific applications of inputs (Irrigation, fertilization etc.) because its depth of 

penetration most closely corresponds to the root zone (Corwin and Lesch, 2005a). 

The hypothesis proposed in this study was that the crop yield is affected by variability in 

water table depths and soil properties.  If these patterns of variability can be measured 

and mapped quickly and non-destructively using EMI methods, it will then allow for the 

development of the variable rate technologies and site-specific management. Site-specific 

management can increase profitability of fields having large spatial variation in soil and 

water table. 

1.1 Objectives: 

The objectives of the study were to: 

i) identify the relationship between selected spatially variable soil properties and 

ECa, 
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ii) use mathematical models to process the ECa outputs of the DualEM-2 for 

estimation of layered soil properties, and 

iii) determine the accuracy of EMI in estimating water table drawdowns 
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CHAPTER 2   REVIEW OF LITERATURE 

 

2.1 Soil Electrical Conductivity (EC) 

There are four types of EC (Davis, 2007). Three EC laboratory methods are soil solution 

EC (ECw), saturated paste extract EC (ECe), and soil solid EC (ECp). In the fourth method 

apparent soil EC (ECa) is determined in the field (Rhoades, 1990b). In case of ECw, soil 

solution is the pore water that is removed from soil samples by a variety of centrifuge and 

non-polar liquid displacement (Cook and Williams, 1998). ECe is the EC measured on a 

soil-water paste. The solution from the paste is extracted and its EC is measured on the 

extract (Rhoades, 1990a; Brady and Weil, 2000). ECp is due to the presence of 

exchangeable anions and cations on the surface of clay particles (Cook and Williams, 

1998). The ECp is measured by direct contact with the solid of the paste and not the 

extract (Rhoades, 1990a; Brady and Weil, 2000).  

ECa, also known as the bulk soil electrical conductivity or apparent ground conductivity, 

is the depth-weighted average of the soil EC (Greenhouse and Slaine, 1983; Cook and 

Walker, 1992). In other words, it is the average of the electrical conductivity readings 

made at different depths in the soil, these depths being dependent on the instrument used 

to make the measurement. ECa includes the conductance through the soil solution, solid 

soil particles, and exchangeable cations that are located on the soil-water interface of clay 

minerals (Corwin and Lesch, 2003).  

2.2 Factors Contributing and Affecting ECa 

The soil can exhibit different electrical properties, depending on its physical and 

chemical properties (Samouelian et al., 2005). Generally, soil solids and rocks have lower 

conductivity than electrolytes in soil moisture, which are the main contributors to ECa 
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(McNeill, 1980a). Therefore, soil moisture content, salinity, and clay content, and 

mineralogy are the three main factors that contribute to soil ECa (Nadler and Frenkel, 

1980; Cook et al., 1989a). EMI can give a measurement of ECa, which is an indirect 

indicator of such soil properties (Hedley et al., 2004). 

When a voltage is applied to the soil moisture, electrons move toward cations causing an 

electric current (McNeill, 1980a). Soil moisture also has a characteristically high ECa. In 

non-saline soils, the more water held in the soil, the higher the ECa measurement 

(Rhoades et al., 1976; Kachanoski et al., 1988; McKenzie et al., 1997; Doolittle et al., 

2000). However, when soils have high salt contents, an increase in water content will 

dilute the salt content and cause the ECa to decrease (Samouelian et al., 2005). Allred et 

al. (2005) found that near-surface volumetric moisture content had the strongest effect on 

ECa measurements.  

ECa can be affected by the electrolyte concentrations in the soil solution (Schumann and 

Zaman, 2003; Samouelian et al., 2005). Salts and their solutions have high EC. 

Therefore, when measuring ECa of a soil containing salts, the readings naturally increase 

(Rhoades et al., 1976; Williams and Baker, 1982; Kachanoski et al., 1988; McKenzie et 

al., 1997). 

Soil particle size is related to EC by influencing the charge density at the surface of the 

soil particles (Samouelian et al., 2005). ECa increases with increasing clay content 

(Rhoades et al., 1976; Kachanoski et al., 1988; McKenzie et al., 1997) and as the particle 

size increases, ECa decreases (Khakural et al., 1998; Fukue et al., 1999). Completely dry 

clay is an insulator. When water is added, clay becomes a conductor. 
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Factors affecting ECa include soil moisture content (Freeland, 1989; Brune and Doolittle, 

1990), salinity (McNeill, 1992; Geonics Limited, 1997; Rhoades et al., 1999), clay 

content (Friedman, 2005), organic compounds (Friedman, 2005), pore size distribution 

(Friedman, 2005), metals (Geonics Limited, 1997), temperature (McNeill, 1980a; 

Geonics Limited, 1997; Allred et al., 2005), cation exchange capacity (Friedman, 2005), 

concentration and mobility of dissolved ions (McNeill, 1980a) and bulk density 

(Friedman, 2005). Consequently, spatial patterns of soil properties can potentially be 

inferred from mapped ECa (Hendrickx et al., 1992; Lesch et al., 1992; Doolittle et al., 

1994; Doolittle et al., 2001; Fraisse et al., 2001; Inman et al., 2002; Kravchenko et al., 

2002).  

2.3 Working Principle of EMI Instruments 

EMI instruments have a transmitter coil located at one end of the instrument to generate a 

primary magnetic field (Hp) (Abdu et al., 2007). This field creates eddy currents in the 

soil and these time-varying currents induce their own magnetic field (Hi) (McNeill, 

1980b, Hendrickx et al., 2002). The induced field is superimposed over the primary field 

and a fraction of both Hp and Hi is intercepted by the receiver coil (McNeill, 1997), 

where the signal is amplified and formed into an output voltage that is linearly related to 

ECa (McNeill, 1980b; Rhoades and Corwin, 1981; Slavich, 1990; Cook and Walker, 

1992; Hendrickx and Kachanoski, 2002; Paine et al., 2004) (Figure 2-1). The distance 

between the transmitting and receiving coil determine how deep in the soil the 

electromagnetic field is measured (Cook and Williams, 1998; Paine et al., 2004). Also, 

most of the instruments have a horizontal and vertical dipole. This also determines how 

deep the instrument can measure ECa (Schumann and Zaman, 2003). 
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Source: EC-DIGISOIL PROJECT PM1 Paris, Sept 29-30
th

, 2009 

Figure 2-1 Schematic diagram of EMI operation 

2.4 DualEM-2 

DualEM geo-conductivity meters simultaneously measure ground conductivity to two or 

more distinct depths of exploration (DOE). These meters can be useful to many kinds of 

agricultural, geological and environmental investigations. These comprise soil salinity 

mapping, the description of conductive contamination plumes from salts and acids, and 

investigation for groundwater and clay (DualEM, Inc. 2005). 

These EMI meters include a transmitter that works at a fixed frequency (9 kHz) and at 

least one pair of receivers. The transmitter and one receiver of the pair have horizontal 

windings, and these components make a horizontal co-planar array (HCP). The other 

receiver has vertical windings; it combines with the transmitter to make a perpendicular 

array (PRP) (DualEM, Inc. 2005). The cumulative responses of PRP and HCP may be 

used as guides to DOE, in that they indicate the depths beyond which PRP and HCP are 

relatively insensitive to response from the earth. For the DualEM-2, the DOE of PRP is 

about 1 m, and the DOE of HCP is about 3 m (DualEM, Inc. 2005). 
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The DualEM can determine up to 3000 mS m
-1 

(DualEM, Inc. 2005). The data 

measurements are manual (discrete) as well as continuous at rates between 0.1 and 8 Hz 

(DualEM, Inc. 2005). The instrument data capacity is 65000 records of either measured 

quantities or GPS position (DualEM, Inc. 2005). The weight of the DualEM-2 is 10 kg 

with 0.089 m in diameter and 2.41 m in length (DualEM, Inc. 2005). 

2.5 Estimating Soil Properties by EMI 

Electromagnetic techniques are
 
well suited for mapping ECa of the soil profile (McNeill, 

1990; Corwin and Lesch, 2005b). The ease and speed with which subsurface information 

can be acquired by EMI make the technology an ideal precursory investigative tool. 

When integrated with a global positioning system (GPS), copious amounts of data can be 

acquired rapidly, geo-referenced, and plotted by commercially available software 

programs (Kitchen et al., 1996). Research studies show that using EMI will reduce the 

amount of time spent in the field and will improve the accuracy and cost effectiveness of 

the soil survey (Cannon et al., 1994; Doolittle and Collins, 1998). 

This technology allows for the detection of both lateral and vertical changes in soil 

subsurface properties. The success of an EMI survey depends upon the local soil 

morphological, physical, and chemical properties (McNeill, 1980b). ECa can provide an 

indirect
 
measure of soil properties (Davis et al., 1997).  

Triantafilis and Lesch (2005) and Lesch et al. (2005) found that there is a high 

relationship between the predicted and measured clay contents. This was confirmed by 

Sudduth et al. (2005). It has been shown that the ECa is moderately correlated with soil 

texture and organic matter, but not with porosity, bulk density, or hydraulic conductivity 

http://soil.scijournals.org/cgi/content/full/70/5/1600?maxtoshow=&hits=10&RESULTFORMAT=&author1=Eigenberg&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortspec=relevance&resourcetype=HWCIT#BIB12
http://soil.scijournals.org/cgi/content/full/70/5/1600?maxtoshow=&hits=10&RESULTFORMAT=&author1=Eigenberg&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortspec=relevance&resourcetype=HWCIT#BIB12
http://soil.scijournals.org/cgi/content/full/70/5/1600?maxtoshow=&hits=10&RESULTFORMAT=&author1=Eigenberg&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortspec=relevance&resourcetype=HWCIT#BIB3
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(Banton et al., 1997). ECa was positively correlated with clay content, laboratory 

measured soil EC, and pH (Johnson et al., 2001). 

ECa was used to map depths to claypans (Sudduth and Kitchen, 1993; Doolittle et al., 

1994); and to determine depths to bedrock (Bork et al., 1998; Doolittle and Collins, 

1998). More conductive soil overlain by sand allowed ECa to estimate sand depth 

(Kitchen et al., 1996). Topsoil depth was estimated using ECa (Sudduth et al., 2001). 

Coarse loamy and fine loamy soils were distinguished using ECa to classify crop 

productivity (Anderson-Cook et al., 2002). Farooque et al. (2011) and (2012) reported 

that EMI data can be utilized to develop management zones for the application of 

fertilizers site-specifically in wild blueberry fields. 

2.6 Estimating Soil Moisture Content and Water Table Depths by EMI 

Rhoades et al. (1976) and Hendrickx et al. (1992) confirmed the relationship between soil 

moisture content and ECa. Sheets and Hendrickx (1995) found a linear relationship 

between ECa and soil moisture content in the upper 1.5 m in an arid region. Kachanoski 

et al. (1988) found a strong correlation (R
2
 = 0.77) between measured volumetric 

moisture content and ECa measurements at different depth intervals. ECa has been 

modeled as a function of soil moisture content and bulk density (Rhoades et al., 1989). It 

has also been shown that ECa could be used to control spatial variability of soil moisture 

content over large areas (Reedy and Scanlon, 2003). 

EMI is a rapid and accurate tool not only in recharge-discharge of water table studies 

(Cook and Williams, 1998). But also can be used to estimate variations in water table 

recharge (Cook et al., 1989b) and evaluate the flow path of subsurface water (Scanlon et 

al., 1997). Schumann and Zaman (2003) used ECa to map shallow groundwater in citrus 
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orchards. The unsaturated flow of soil moisture in an arid region was characterized with 

ECa (Scanlon et al., 1999). EMI was also able to explain over 80% of the water table 

depth variation across a hill slope (Sherlock and McDonnell, 2003). 

2.7 Limitations Using EMI during Recording Measurements 

This technique does not work in all soil environments (Doolittle and Collins, 1998). One 

limitation is that the soil is not homogenous (Boettinger et al., 1997). There are various 

soil constituents that conduct electrical current. The more variability is in the soil, weaker 

the correlation (Doolittle et al., 2000). EMI is also greatly affected by the interference 

from proximate features like adjacent buildings, power lines, pumps and even bedrock 

(Doolittle and Collins, 1998; McNeill and Bosnar, 1999; Schumann and Zaman, 2003). 

Ground truthing is an important part of measuring ECa using EMI (Scanlon et al., 1999; 

Freeland et al., 2001). It is the method to determine which soil components are more 

contributing to the electrical current flow (Freeland et al., 2001). Therefore, analysis of 

the soil is desired to determine which properties contribute to the ECa. The designated 

DOE calculated by inter-coil spacing is a theoretical value (McNeill, 1986). There will 

always be deviations of penetration depth due to different soil properties. 

2.8 Efficiency and Benefits of EMI 

Measurements can be made and recorded as fast as the operator can move from one 

measurement location to another (McNeill, 1980a; Hendrickx et al., 1992). Large 

amounts of ECa data can be collected using computer at a single time, thus eliminating 

several trips into the field (McKenzie et al., 1997). Measurement of ECa using EMI also 

measures large volumes of soil, which reduces estimates and repeated trips to the field 
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(Hendrickx et al., 1992). The instrument is not required to disturb the soil medium; 

therefore, measurements can be recorded rapidly (McNeill, 1980a). 

Computer generated maps are an alternative method for displaying soil information. They 

provide quantitative interpretations of ECa data, which can improve understanding of soil 

distributions (Doolittle et al., 1996; Corwin and Lesch, 2003). Mapping ECa is utilized by 

global positioning technologies (Jaynes et al., 1993; Mueller et al., 2004) which can be 

useful in site-specific management in order to characterize soil parameters such as soil 

salinity (Rhoades and Ingvalson, 1971), cation exchange capacity (CEC) (McBride et al., 

1990), clay content (Williams and Hoey, 1987), topsoil thickness (Doolittle et al., 1994), 

and geologic strata (Zalasiewicz et al., 1985). Interpolation procedures are essential to 

generate maps quantifying ECa values over continuous soil surfaces. Interpolation quality 

depends on measurement errors, variability of ECa, and the procedures used to interpolate 

ECa (Mueller et al., 2004). EMI also accurately measures small variations in conductivity 

(McNeill, 1980b) and conducts survey with excellent resolution (Geonics, 2005). 

There have been many studies to map vegetation as well as hydrology using EMI. Low 

plant cover does not significantly affect the measurements of the instruments in taking 

ECa readings (Hendrickx et al., 1992; Boettinger et al., 1997; Brevik et al., 2003). There 

was no significant effect on ECa measurements in a forest soil (Cook and Williams, 

1998). EMI is an investigative tool that can be used to direct more costly and time-

consuming surveys (Doolittle et al., 2001; Inman et al., 2002). Most of the EMI 

instruments are lightweight and can be transported by a single person. This requires fewer 

people in the field at one time. Total man-hours are less when using EMI as compared to 

conventional methods (McNeill, 1980b).  
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2.9 Soil Sampling 

Soil sampling is normally used to characterize the soil and its nutrient status of a field. 

There is no single optimal strategy for collecting soil samples due to differences among 

fields and management practices. Sampling on evenly spaced grids has become a 

common practice in precision agriculture (Lund et al., 1999). However, when very small 

grid sizes are used to adequately capture spatial variations, the practice can quickly 

become cost prohibitive. This experience has established the need to identify the 

variability in a field before soil samples are collected for analysis. Armed with 

knowledge of soil variability, sample locations can be chosen so that they are truly 

representative of the field. This designed set of sample points is referred to as directed 

sampling (Lund et al., 1999). Sampling according to soil variability coupled with an ECa 

map can be more effective than grid sampling (Lund et al., 1998; Farooque et al., 2011, 

2012).  

2.10 Principle of Time Domain Reflectometry (TDR) 

The underlying principle of TDR involves measuring the travel time of an 

electromagnetic wave along a waveguide. The speed of the wave in soil is dependent on 

the bulk dielectric permittivity of the soil matrix (Roberto and Guida, 2006). The fact that 

water has a much greater dielectric constant than air or soil solids is exploited to 

determine the volumetric moisture content (θv) of the soil. The θv measured by TDR is an 

average over the length of the waveguide. 

Electronics in the TDR 300 generate and sense the return of a high energy signal that 

travels down and back, through the soil, along the waveguide composed of the two 

replaceable, stainless steel rods. The sampling volume is an elliptical cylinder that 
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extends approximately 3 cm out from the detecting rods of TDR. The high frequency 

signal information is then converted to θv (Campbell, 1990). 

2.11 Global Positioning System (GPS) 

The GPS is a space-based global navigation satellite system that provides reliable 

location and time information where there is an unobstructed line of satellites (Morgan 

and Ess, 1997). A GPS receiver determines the location of the point using pseudo random 

signals from at least four satellites; more satellite signals give higher accuracy (Morgan 

and Ess, 1997). 

The development and implementation of precision agriculture or site-specific farming has 

been made possible by combining the GPS and geographic information systems (GIS). 

These technologies enable the coupling of real-time data collection with accurate position 

information, leading to the efficient manipulation and analysis of large amounts of geo-

spatial data. GPS-based applications in precision agriculture are being used for farm 

planning, field mapping, soil sampling, tractor guidance, crop scouting, variable rate 

applications, and yield mapping (Hurn, 1993). The GPS technology also allows 

agricultural producers to work during low visibility field conditions.  

Since the GPS locations are determined from the time taken by the signal from the 

satellite to reach the receiver, any deviation can cause error in the calculated location 

(Hurn, 1993).  Differential Global Positioning System (DGPS) is a method of increasing 

the accuracy of positions derived from GPS receivers. The DGPS is used to compensate 

the timing errors, to reduce noise in the medium, and the electronic noise in the receiver 

(Saunders et al., 1996; Morgan and Ess, 1997). 

 

http://en.wikipedia.org/wiki/Global_navigation_satellite_system
http://en.wikipedia.org/wiki/Positioning_system
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2.12 Relationship between ECa and Yield 

Among the factors that affect crop yield, soil water holding capacity is usually a 

significant contributor. ECa measurements in non-saline soils are driven primarily by soil 

texture and soil moisture. Same factors highly correlate to the soil water holding capacity. 

Thus, an ECa map can serve as a proxy for soil water holding capacity, resulting in ECa 

and yield maps that frequently exhibit similar spatial patterns (Lund et al., 2000). It is not 

surprising that soil physical properties and yield maps show visible correlation, because 

soil serves as the primary growth medium for crops. These properties affect significantly 

on water and nutrient holding capacity, which are main drivers of yield (Jaynes et al., 

1995). The relationship between ECa and yield has been reported by Kitchen and Sudduth 

(1996) and Fleming et al. (1998). They found that the non-linear relationship of EMI 

measurements to crop yield showed R
2
 fairly low. 

2.13 Geographic Information System (GIS) 

The geographic information system (GIS) is the merging of cartography, statistical 

analysis, database and modeling technology. The GIS is also a powerful management tool 

which supports several interpolations and mapping techniques for evaluation and 

presentation of spatial variation (Schueller, 1992; Usery et al., 1995; Miller and Whitney, 

1999).  

2.14 Summary 

Electromagnetic induction (EMI) is a broad precursory investigative tool that can be used 

to direct and focus the costly and time-consuming surveys. It can be used for obtaining 

high intensity, non-intrusive, spatially continuous soil information (Inman et al., 2002). 

ECa patterns are largely governed by spatial variations in soil profile properties and water 
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table depth (Allred et al., 2005). ECa mapping would be a useful tool in precision 

agriculture and it could be suitable for rapid and low-cost determination of soil variation 

over large areas (Ristolainen et al., 2009).  

Effective and efficient management of water has a great importance for many agricultural 

communities (Gordon, 2005). Water conservation has advantages for society, 

environment, and agriculture. It is increasingly recognized that, although soil moisture 

content changes over time, the spatial pattern of its variability is fairly constant with time. 

Soil moisture content and water table levels are often the main reasons for yield variation. 

The movement and availability of soil water is greatly affected by soil structure and 

physical properties (Farkas et al., 2006). Interpretation of yield maps may improve by a 

good estimation of moisture content and its relationship to rainfall amount (Newton and 

Williams, 2006). 

The soil moisture content is influenced by soil properties that relates to texture, structure, 

depth and organic matter of the soil and landscape features such as elevation and 

topography (Corwin, 2006). In general, EMI can provide spatially comprehensive 

information about soil texture, and temporally consistent monitoring of moisture, 

nutrients, salinity and water table depths (Eigenberg et al., 2006). 
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CHAPTER 3   MATERIALS AND METHODS 

3.1 Description of Research Sites 

The research was conducted on two blueberry fields, a pasture field and a field with 

soybean-barley rotations. Soil properties and water table depths were measured and 

mapped using the DualEM-2. The blueberry fields are located at  ondonderry          , 

          and  orth River          ,            both in central Nova Scotia, Canada. 

Both fields were in their fruit year of the biennial crop production cycle in 2010, and 

vegetative sprout year in 2011. The fields have not been under commercial management 

since 2010 and did not receive biennial pruning by mowing along with inorganic 

fertilizer, herbicides, fungicides, insects and disease management practices. While these 

practices greatly affect and contribute to the wild blueberry yield (Yarborough et al., 

1986; Warman, 1987). The soils at the wild blueberry fields are classified as well drained 

sandy loam (Orthic Humo-Ferric Podzols  and are acidic in nature   ebb et al.,      . 

The soybean-barley field is located at the  io- nvironmental  ngineering Centre 

    C ,  ible Hill,  ova Scotia          ,          , and the pasture field is at the 

 oulden  ield          ,           at the Nova Scotia Agricultural College (NSAC). The 

soils of soybean, barley and pasture fields consist of “Debert   ” and “Pugwash   ” soil 

groups and have coarse loamy soil material (Webb et al., 1991). The BEEC and Boulden 

Fields have tile drainage systems. The diameter of the pipelines is 10 cm at both sites 

while the spacing between the pipes is 14 m and 7 m at BEEC and Boulden Sites, 

respectively. 

3.2 Soil Sampling Strategy 

The ECa survey data collected by DualEM-2 (DualEM Inc., Milton, Ontario) was used to 

optimize the soil sampling strategy (Lund et al., 1998; Farooque et al., 2011, 2012). 
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Horizontal co-planar geometry (HCP) and Perpendicular co-planar geometry (PRP) were 

both utilized to develop a sampling strategy to collect soil, plant and fruit yield samples 

from all fields. The models of semivariogram were developed to best fit the HCP and 

PRP data. The grid size to collect soil, plant and fruit yield samples was then established 

based on the range of the influence from semivariogram. Kerry and Oliver (2003) 

suggested that the grid pattern for sampling is one third or half of the range of variability.  

Based on the range of the variability, a grid size was selected for sampling at all sites. 

Geo-statistical analysis was performed using GS+ Geostatistics for the Environmental 

Sciences Version 9 software (Gamma Design Software, LLC, Woodhams St, Plainwell, 

MI) to produce a semivariogram.  

3.3 Collection of Soil Samples 

In BEEC and Boulden Fields, soil samples were collected using a power auger during 

installation of water table wells (Figures 3-1 and 3-2) at 0-15 cm, 15-45 cm, 45-75 cm, ---

-- up to the water table below the soil surface at each water table well location. i.e., the 

sampling depths (at least 75 cm deep) were transient. The sampling depths varied from 

well to well on the basis of time dependent water table presence. In the wild blueberry 

fields, soil samples were collected using a ditch soil sampling auger at 0-15 cm depth 

(Figures 3-3 and 3-4). The samples were labeled and placed for two weeks for air drying. 

The air dried samples were grinded using a soil grinding machine (Nasco Farm & Ranch 

Co, WI), and passed through 2 mm sieve. 
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Figure 3-1 Field layout of BEEC Field, showing location of 30 observation wells and 

field boundary 

 

 
Figure 3-2 Field layout of Boulden Field, showing location of 30 observation wells 

and field boundary 
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Figure 3-3 North River research Site and sampling design 

 

 
Figure 3-4 Carmel research Site and soil sampling design 
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3.4 Soil Analysis 

All the air dried samples were analyzed for soil organic matter content (SOM) using the 

loss ignition method (Davies, 1974); soil texture, using the hydrometer method (Day, 

1965; Gee and Bauder,        soil volumetric moisture content  θv , using theTime-

Domain Reflectometry (TDR) (Roberto and Guida, 2006); soil pH, using a standard pH 

meter (McLean, 1982; Mann, 2009); and soil electrical conductivity (EC), using a 

conventional meter (Rhoades, 1982; Mann, 2009). The soil samples were collected once 

in the first year of study (3
rd

 week of June, 2010) and then sampling was repeated in last 

week of May, 2011. The coordinates of each sampling point, well location at two sites 

and the boundaries of the fields were recorded with the RTK-GPS. 

 3.5 Calibration of TDR 

To calibrate the TDR probes, ten samples with the known volume of the soil were 

collected from the field and the θv was determined from the gravimetric method (wet-dry 

weight method . The θv was also determined from the same sampling points using TDR 

probes. The moisture content determined by the both method was analyzed using 

regression analysis to check the accuracy of the TDR, before using for the experiment. 

3.6 Sieve Analysis of Coarse Aggregates 

Since the wild blueberry fields are rocky in nature. In order to assess the effect of 

aggregates/ crystalline rocks on ECa, the sieve analysis of coarse aggregates was 

performed to calculate the percentage of these rocks. The soil samples were collected 

from blueberry fields and air dried. The sieves were selected with suitable openings to 

achieve the information required. The sieves were nested in order of decreasing size of 

opening from top to bottom and the sample was placed on the top sieve. The sieves were 
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agitated by mechanical sieve shaker for 5 minutes. The mass of each size increment was 

determined on a scale or balance.  

3.7 Apparent Ground Conductivity 

Apparent ground conductivity (ECa) measurements were made manually at each soil 

sampling and well point immediately after the soil samples were collected and the water 

table depths were measured. The DualEM-2 was used to measure ECa at ground level in 

both the horizontal coplanar geometry (HCP) and perpendicular geometry (PRP), which 

corresponded with the vertical-dipole and horizontal-dipole modes of the EM38 

instrument (Geonics Limited, Mississauga, Ontario, Canada), respectively (Abdu et al., 

2007). The difference between the HCP and PRP readings indicates the distributions of 

salinity with depth (McNeill, 1980b). The difference is defined as the PRP reading minus 

the HCP reading. A negative difference indicates increasing salinity with depth whereas 

positive difference indicates decreasing salinity with depth (Chaves, 1995). Five ECa 

values were sampled and averaged at each sampling and well location.  

3.8 Elevation 

A survey was conducted using RTK-GPS to measure and map surface elevation of each 

field. The elevation survey data were imported into ArcGIS 10 software (ESRI Redland, 

CA). These data were interpolated to develop smooth elevation contour maps and digital 

elevation models (DEMs) for additional slope derivations and calculations.  

3.9 Water Table Measurement 

Thirty water table observation wells were installed in June, 2010 in each of BEEC and 

Boulden Fields. Due to the rocky nature of soils in blueberry fields, no wells were 

installed. A 5 cm diameter polyvinyl chloride (PVC) pipe, perforated with small holes in 
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the lower section was installed, and its position was recorded using RTK-GPS. Each PVC 

well had a nylon fabric filter material to prevent soil entry. A PVC end-cap was placed 

over the top end of the pipe to prevent water or soil from entering. Measurements of 

water table depths and ECa were made from June to October, 2010 and then repeated 

from May to October, 2011. These measurements were made immediately before and 

after significant rainfall for three consecutive days to record the rise and recession of 

water table levels. A water level sensor was used to measure depth to the water table.  

3.10 EMI Surveys and Data Processing  

An intensive DualEM survey was conducted at each field using the DualEM-2 to relate 

the ECa to the water table depth fluctuations and selected soil properties variation. The 

instrument has a built-in DGPS. The EMI survey system consisted of the DualEM-2 

mounted on a sled, towed behind an all-terrain vehicle (ATV) at a speed of 

approximately 5 km hr
-1

. The DualEM-2 itself is housed in a thermoplastic case (with 

Styrofoam insulation on both ends). The DualEM-2 housing and sled maintains the 

DualEM-2 sensor approximately 15 mm above the soil surface and this small spacing is 

found to have no noticeable impact of instrument readings (Brevik et al., 2003). The 

surveys collected and recorded geo-referenced HCP and PRP values automatically after 

every 5 seconds during a survey. The lines of 5 m spacing were generated using ArcGIS 

software and EMI surveys were guided by a RTK-GPS on those lines. Customized 

Windows software on a laptop computer was used to merge the ground conductivity 

(HCP and PRP) data with corresponding GPS position coordinates through RS232 ports 

and these data were stored. 
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3.11 Program Development 

A short program was written in Microsoft Visual Studio 2010 software for processing the 

two outputs of the DualEM-2 and to estimate the crystalline rock formation in wild 

blueberry fields, and water table depths at BEEC and Boulden Fields. The HCP, PRP, 

height of the instrument above the ground surface and the desired depth or thickness of 

upper layer of interest were used as an input and the ground conductivity of the upper 

desired layer and underlying earth were outputs of this program. This program was able 

to calculate the ground conductivities of two different layers below the soil surface and 

the depth to interface between these layers. The following equations, formulated by 

McNeill (1980a), and McNeill (1980b) cumulative response curves, were used in the 

program to calculate the layer conductivities and interface depth: 

HCP = Hy x Cy + He x Ce ------------- (1) 

PRP = Py x Cy + Pe x Ce -------------- (2) 

Where, 

HCP = Horizontal component of ground conductivity measured by DualEM in mS m
-1 

PRP = Perpendicular component of ground conductivity measured by DualEM in mS m
-1 

Hy = Cumulative sensitivity of the HCP geometry to the upper layer 

He = Cumulative sensitivity of the HCP geometry to the underlying layer 

Py = Cumulative sensitivity of the PRP geometry to the upper layer 

Pe = Cumulative sensitivity of the PRP geometry to the underlying layer 

Cy = Conductivity of an upper layer of fixed thickness in mS m
-1 

Ce = Conductivity of an underlying layer in mS m
-1
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3.12 Statistical Analysis 

Descriptive statistics such as mean, minimum, maximum, median, standard deviation 

(SD), and coefficient of variance (CV) values were calculated using SAS 9.2 statistical 

software (SAS Institute Inc., NC, USA). The normality was tested using Anderson-

Darling (A-D) test using Minitab 16 statistical software (Minitab Inc., NY, USA) at a 

significance level of 5% and the skewness and kurtosis coefficients were calculated 

(Farooque et al., 2011, 2012). Correlation coefficients were determined for soil properties 

and ECa data. Regression models were developed to estimate soil properties and water 

table depths using ECa. Transformed, linear, logarithmic, quadratic and cubic models of 

ECa were evaluated to find the best-fitting models to estimate soil properties and water 

table depths. The accuracy of the water table depths and soil properties predicted from 

ECa was estimated from the root mean square error (RMSE) (Coulibaly et al., 2001; 

Schumann and Zaman, 2003; Daliakopoulos et al., 2005; Vasquez-Amabile and Engel, 

2005; Krishna et al., 2008; Arshad et al., 2009; Sethi et al., 2010 and Khan et al., 2011). 

The RMSE represents the average deviation of actual water table depths from the fitted 

regression models (Schumann and Zaman, 2003). 

Classical statistics provides the overall variability of the property of interest; however, it 

does not provide the spatial trend. Therefore, semivariograms were calculated from the 

water table depths to determine the degree of spatial correlation. The first objective of 

this study was just to develop the relationship of soil properties and ECa so the 

geostaistical and semivariogram data of soil properties were not reported and discussed in 

this study. These were reported only for WTD to see the spatial variability. The 

semivariograms were calculated using the GS+ Geostatistics for the Environmental 
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Sciences Version 9 software (Gamma Design Software, LLC, Woodhams St, Plainwell, 

MI). Each experimental semivariogram was fitted with linear, exponential, spherical and 

Gaussian models and the model of best fit was selected. The results of the fitting were 

plotted and the nugget, sill and the range were recorded. Nugget semivariance is the 

variance at zero distance; range is the lag distance between measurements at which one 

value of one variable does not influence neighboring values, i.e., the distance at which 

values of one variable become spatially independent of another; and sill is the asymptotic 

plateau of the semivariogram function and is used to estimate the range (Lopez-Granados 

et al., 2005). The ratio between the nugget and the sill characterizes the importance of the 

random component in the whole field spatial variability of the data and provides 

quantitative measures of spatial dependence at the chosen lag distance interval (Lopez-

Granados et al., 2005).  

3.13 Yield Estimation  

The fruit yield was harvested manually using hand rakes from 0.5 x 0.5 m steel frame 

quadrant at each grid point in wild blueberry fields to measure the yield (Zaman et al., 

2008). In Boulden Field, biomass was recorded using plate pasture meter (Farmworks 

Precision Farming Systems, Fielding, New Zealand) at the selected points (Flynn et al., 

2006). A small combine harvester having 1 m cutting width was used to assess the yield 

variability at BEEC Field (Figure 3-6). Plots of 5 x 1 m were selected at sampling 

locations for this harvesting. 
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Figure 3-5 Harvesting at selected plots in BEEC Field 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

CHAPTER 4  DEVELOPMENT OF RELATIONSHIPS BETWEEN 

SELECTED SOIL PROPERTIES AND APPARENT GROUND CONDUCTIVITY 

4.1 Introduction 

Traditionally, farm managers consider fields as uniform and thus, fertilizers, pesticides, 

irrigation, seed rate etc., are applied without taking into account spatial variations in field 

characteristics. When fields are managed as uniform piece of land, it results in over-

application or under-application in some areas within a field. Under treated zones do not 

reach optimum levels of exploitation whereas the over-treated ones there may pose risk 

of environmental pollution and an increase in costs (Bouma, 1997). 

Features and inconsistency of soil parameters have been extensively examined in 

precision agriculture research and application (Hache, 2003). Different sensing 

technologies are under development and others are already being put on in order to gather 

data from the soils precisely and in actual. Soil properties differ from one study to 

another depending on the accessibility of sources for investigation, purposes, and 

awareness of field variability (Hache, 2003). For this present research, analyzed soil 

parameters were moisture content, organic matter, texture, pH, and electrical 

conductivity. 

Soil moisture content states to the quantity of water held by the soil (Hache, 2003). Soil is 

a spongy medium, which contains different sizes of pores and the water that enters the 

soil either remains in the pores, percolates through them (Baver, 1961) or evaporates 

(Havlin et al., 2005). Organic matter presence in the soil aids to retain moisture content 

(Baver, 1961). Deficiency of moisture may cause a reduction in subsequent growth or 

may even be deadly during periods of active growth (Black, 1957). Plant growth is 

basically an increase in volume resulting from the creation and expansion of cells and if 
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there is deficiency of water the growth of shoot parts of plants is limited (Black, 1957). 

Waterlogging can also disturb plant growth and yield, given that water moves air from 

the pore spaces, inducing a stop in growth of roots resulting in a severe drop in the uptake 

and transport of mineral nutrients (Marschner, 1995). 

Soil organic matter is the most critical soil property because of its effect on many 

biological, chemical and physical properties intrinsic in a productive soil (Havlin et al., 

2005), and therefore its contribution to plant growth and improvement (Tatabatai, 1996). 

Organic matter in soils has two major functions: (a) a nutritional one causing from 

mineralization of organic nitrogen, sulphur and phosphorus (Tatabatai, 1996; Mengel and 

Kirkby, 2001) and (b) a physical one linking to the upgrading of physical properties 

(Mengel and Kirkby, 2001). It also gives a pH buffering action retaining a uniform soil 

pH (Havlin et al., 2005). 

Texture defines the soil’s internal geometry and porosity, its connections with fluids and 

solutes (Hillel, 1998). This time-invariant static parameter has a direct effect on the 

nature of the dynamic soil parameters. The most important dynamic soil property 

influenced by the time-invariant static soil physical properties is soil moisture content. 

Soil moisture status is serious to plant growth, crop quality, chemical fate and transport, 

and microbial processes (Abdu, 2009). Soil structure and texture are important properties 

monitoring the hydraulic conductivity and infiltration capacity of a soil system. 

pH is a degree of soil acidity. It is a main chemical property because it disturbs the 

accessibility of nutrients to plants and the activity of microorganisms in the soil (Hache, 

2003). Reduction in soil pH is affected by numerous factors including the use of 
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commercial fertilizers, especially NH4
+
 sources that make H

+
 during nitrification and 

decomposition of organic residues (Havlin et al., 2005). 

Electrical conductivity is a major soil parameter as it correlates to soil parameters 

influencing crop productivity (PPI, 1996). Some grain crops (e.g., rice, wheat, corn and 

barley) are relatively salt tolerant at germination and maturity but are very sensitive 

during early seedling and, in some cases, vegetative growth stages. In contrast, sweet 

potato, safflower, soybean, and many bean crops are sensitive during germination. This 

result depends on variety, especially with soybean (Marshner, 1995; Havlin et al., 2005). 

In precision agriculture some devices are being developed to record this soil parameter on 

real-time. 

Soils are varied, and wide heterogeneity can occur even in fields that seem uniform 

(Havlin et al., 2005; Farooque et al., 2011, 2012). The first step in precision agriculture is 

to measure important factors that specify or influence the efficiency of the growing crop 

(Blackmore et al., 2002). Intensive soil sampling is the most valuable way to quantify 

variability (Havlin et al., 2005), but it demands human effort and time. Therefore, there 

exists the need for new methods that enable rapid measurement of soil parameters. The 

objective of this chapter was to develop relationship between selected soil properties and 

ECa for predicting those soil properties in a rapid and non-destructive manner. 

4.2 Materials and Methods 

A soybean-barley, a pasture and two wild blueberry fields in central Nova Scotia were 

selected to develop relationships between soil properties and ECa. A grid pattern of 

sampling points was established at each experimental site except at pasture field based on 

the range of influence of semivariograms to collect soil samples (Figure 4-1). The soil  
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Figure 4-1 Research Sites and soil sampling design 

 

samples were analyzed for SOM, texture, θv, pH, and EC using standard methods. The 

soil bulk density  ρb) was calculated using oven-dried mass of the sample divided by the 

sample volume (Blake and Hartge, 1986). Soil texture and pH were measured once at the 
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onset of the experiment since these parameters do not tend to change significantly in two 

monitoring years. Other soil properties were determined twice during 2 year study. The 

ground conductivity values (HCP and PRP) using DualEM were also recorded at each 

sampling point along with soil samples. The coordinates of each sampling point were 

recorded with a RTK-GPS. The boundary of the fields was also marked using a RTK-

GPS. Samples were collected at 0 to 15, 15 to 45, and 45 to 75 cm soil depths. These 

sample depths were selected because we were most appealed in soil properties associated 

with the concept of soil quality, and these depths coincide with many previous similar 

investigations (Wander and Bollero, 1999; Brejda et al., 2000; Kettler et al., 2000; 

Johnson et al., 2001). The samples were air dried and ground to pass a sieve with 2 mm 

openings. Slope variability was measured and mapped with SMMS once at the beginning 

of experiment. Elevation was also measured and mapped once using RTK-GPS. Detailed 

materials and methods were discussed in Chapter 3. 

4.3 Statistical Analysis 

Means, minimums, maximums, medians, standard deviations (SDs), and coefficient of 

variations (CVs) of selected soil properties (soil texture, SOM, EC, pH, θv and coarse 

aggregate) were calculated using SAS 9.2 statistical software. Data normality was tested 

using Anderson-Darling (A-D) test using Minitab 16 statistical software at a significance 

level of 5% and the skewness and kurtosis coefficients were calculated. Pearson 

correlation coefficients were calculated for all pairs of soil property, yield and ECa data.  

Regression models were derived to calibrate the DualEM-2 to predict soil properties 

using ECa in each field separately (n = 50). Transformed, linear, logarithmic, quadratic, 

and cubic models of ECa were evaluated to find the best-fitting models. Soil samples 
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(n=20) were obtained from the same field during the summer of 2011, analyzed in the 

laboratory using the same procedures indicated in Chapter 3. The calibration equations of 

first year for each selected field were used to predict soil properties in second year data 

for validation. Calibration and validation of regression equations/models, coefficient of 

determination (R
2
) and root mean square (RMSE) were calculated using Minitab 16 

statistical software. 

4.4 Results and Discussion 

4.4.1 Sampling Strategy 

The apparent ground conductivity survey conducted by DualEM was utilized to develop a 

sampling strategy to collect soil samples from all fields except Boulden Field. The 

semivariogram for ECa data were developed and gaussian and spherical models of 

semivariogram were found to best fit the data set in soybean-barley and wild blueberry 

fields, respectively. The grid size to collect soil samples was then established based on 

the range of the influence from semivariogram which was found to be around 54 m for 

BEEC and 60 m for blueberry fields (Fig. 4-2 to 4-4). The grid pattern for sampling is 

one third or half of the range of variability (Kerry and Oliver, 2003; Farooque et al., 

2012). Based on the range of the variability, a grid size of 20 x 20 m was selected for 

sampling. 

  
Figure 4-2 Semivariogram of ECa at North River Site 

R
 

 = 0.   

Range =  0. 0 m 
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Figure 4-3 Semivariogram of ECa at Carmel Site 

 

  
Figure 4-4 Semivariogram of ECa at BEEC Site 

4.4.2 Descriptive Statistics of Soil Properties and Crop Yield 

Soil properties at the deepest sampling depth (45-75 cm) were generally more normally 

distributed than at the shallower sampling depths (Tables 4-1 to 4-4). Similarly, most soil 

property values at the deepest depth were noticeably different from the shallower 

sampling depths. For example, mean values of clay content and θv at the 45 to 75 cm 

sampling depth were higher than at shallower depths. Clay content at the deepest  

 

 

 

 

R
  

= 0.   

Range =   . 0 m 

R
  

= 0.   

Range =   . 0 m 
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Table 4-1 Descriptive statistics of soil properties at North River Site 

Properties n Depth† Min. Max. Mean CV 

(%) 

Skewness Kurtosis 

Clay, % 

 

 

Silt, % 

 

 

Sand, % 

 

 

Gravel, % 

 

 

SOM, % 

 

 

θv, m
3
 m

-3 

 

 

 C, μS cm
-1

 

 

 

pH 

 

 

PRP, mS m
-1 

HCP, mS m
-1 

50 

35 

7 

50 

35 

7 

50 

35 

7 

50 

35 

7 

50 

35 

7 

50 

35 

7 

50 

35 

7 

50 

35 

7 

50 

50 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

 

0.0  

0.0  

12.0  

15.0  

12.0  

20.0  

44.0  

38.0  

32.0  

33.0  

32.0  

26.0  

4.4  

4.4  

4.0  

5.9  

6.2  

8.4  

36.0  

37.0  

37.0  

5.0  

5.2  

5.5  

0.1  

0.1  

20.0 

20.0 

30.0 

43.0 

44.0 

38.0 

84.0 

80.0 

65.0 

73.0 

79.0 

52.0 

13.0 

11.0 

8.0 

35.0 

32.0 

37.0 

103.0 

180.0 

55.0 

6.2 

6.5 

6.6 

21.0 

20.0 

7.8 

13.0 

17.0 

28.0 

27.0 

30.0 

64.0 

60.0 

52.0 

53.0 

56.0 

39.0 

8.4 

6.6 

5.2 

22.0 

24.0 

29.0 

54.0 

55.0 

45.0 

5.6 

5.6 

5.8 

6.3 

6.2 

78.0 

49.0 

33.0 

25.0 

24.0 

25.0 

16.0 

17.0 

23.0 

17.0 

17.0 

29.0 

22.0 

23.0 

25.0 

31.0 

29.0 

26.0 

24.0 

47.0 

16.0 

10.0 

4.5 

6.9 

60.0 

76.0 

0.40 

-0.50 

2.10 

0.20 

0.10 

-0.30 

-0.01 

-0.07 

-0.70 

-0.20 

-0.20 

0.06 

0.50 

0.90 

1.80 

-0.20 

0.40 

1.50 

2.10 

3.80 

0.30 

3.10 

1.60 

2.30 

1.70 

1.00 

-0.9 

-0.8 

5.1 

-0.6 

0.2 

-2.4 

-0.6 

-0.7 

0.2 

-0.4 

1.3 

-1.5 

0.0 

1.2 

3.8 

-0.3 

-0.7 

2.0 

4.4 

17.0 

-1.8 

10.5 

3.9 

5.5 

3.6 

0.4 
†  , 0 to 15 cm sampling depth; 2, 15 to 45 cm sampling depth; 3, 45 to 75 cm sampling depth 

Note: Clay, silt, sand, SOM, EC, pH, and  θv at 2
nd

 and 3
rd

 sampling depth were measured once in June, 

2010. θv at 1
st
 sampling depth was measured bi-weekly from June to October, 2010. 

 

depth was more than twice that of the shallower sampling depths. The proportion of the 

sand and SOM were clearly higher at the 0-15 cm depth than the deeper sampling depths. 

Differences between the shallow sampling depth and the deeper sampling depths can be 

recognized to the following factors. First, tillage operations were primarily disc and field 

cultivation to a depth of 10 to 15 cm. Consequently, organic matter from plant residue 

assimilation as well as fertilizer amendments was mostly stratified within the surface 
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Table 4-2 Descriptive statistics of soil properties at Carmel Site 

Properties n Depth† Min. Max. Mean CV 

(%) 

Skewness Kurtosis 

Clay, % 

 

 

Silt, % 

 

 

Sand, % 

 

 

Gravel, % 

 

 

SOM, % 

 

 

θv, m
3
 m

-3 

 

 

 C, μS cm
-1

 

 

 

pH 

 

 

PRP, mS m
-1 

HCP, mS m
-1 

50 

43 

9 

50 

43 

9 

50 

43 

9 

50 

43 

9 

50 

43 

9 

50 

43 

9 

50 

43 

9 

50 

43 

9 

50 

50 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

 

1.0  

6.0  

9.0  

32.0  

2.0  

14.0  

35.0  

38.0  

28.0  

40.0  

47.0  

38.0  

5.2  

3.6  

3.2  

10.0  

14.0  

16.0  

60.0  

40.0  

40.0  

4.6  

5.0  

5.3  

0.7  

0.0  

14.0 

44.0 

29.0 

53.0 

40.0 

43.0 

58.0 

80.0 

77.0 

75.0 

59.0 

65.0 

14.0 

10.0 

8.0 

34.0 

37.0 

35.0 

78.0 

76.0 

52.0 

5.4 

5.6 

5.7 

7.5 

11.8 

7.4 

15.0 

18.0 

43.0 

24.0 

28.0 

49.0 

61.0 

54.0 

60.0 

60.0 

48.0 

9.6 

6.8 

4.6 

26.5 

30.8 

32.3 

68.3 

53.0 

45.0 

5.1 

5.3 

5.5 

3.8 

5.4 

41.0 

60.0 

38.0 

10.0 

34.0 

35.0 

9.9 

19.0 

27.0 

13.0 

13.0 

22.0 

18.8 

22.0 

31.0 

15.4 

19.0 

13.4 

8.5 

20.0 

9.2 

4.3 

3.3 

2.4 

44.0 

53.0 

-0.30 

1.50 

0.60 

0.20 

-0.10 

0.30 

-0.90 

-0.30 

-0.30 

-0.10 

0.30 

1.20 

0.10 

0.03 

1.10 

-1.30 

0.70 

0.40 

0.30 

0.90 

0.20 

-0.70 

-0.70 

-0.40 

0.02 

-0.20 

-0.40 

2.40 

-0.30 

0.70 

0.03 

-1.00 

1.20 

-0.80 

-0.20 

0.30 

-0.80 

1.40 

-0.02 

-0.60 

0.70 

3.80 

4.30 

3.50 

-1.10 

-0.30 

-1.20 

-0.20 

-0.80 

0.70 

-0.30 

-0.40 
†  , 0 to    cm sampling depth   ,    to    cm sampling depth   ,    to 75 cm sampling depth 

Note: Clay, silt, sand, SOM, EC, pH, and  θv at 2
nd

 and 3
rd

 sampling depth were measured once in June, 

2010. θv at 1
st
 sampling depth was measured bi-weekly from June to October, 2010. 

 

15 cm of soil but this factor is not applicable in wild blueberry fields because there is no 

tillage operation. Second, the 2
nd

 and 3
rd

 sampling depths were twice the thickness of the 

first sampling depth. Therefore, these deeper sampling depths had a greater possibility of 

including multiple horizons compared with the shallowest sampling depth. This second 

point is reinforced by the generally higher CV of most soil properties at the 15 to 45 and  
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Table 4-3 Descriptive statistics of soil properties at BEEC Site 

Properties n Depth† Min. Max. Mean CV 

(%) 

Skewness Kurtosis 

Clay, % 

 

 

Silt, % 

 

 

Sand, % 

 

 

SOM, % 

 

 

θv, m
3
 m

-3 

 

 

 C, μS cm
-1

 

 

 

pH 

 

 

PRP, mS m
-1 

HCP, mS m
-1 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

 

3.0  

5.0  

2.0  

0.0  

5.0  

11.0  

46.0  

42.0  

24.0  

2.8  

0.8  

0.4  

26.0  

29.0  

25.0  

67.0  

42.0  

29.0  

6.0  

6.0  

5.8  

5.0  

7.0  

25.0 

32.0 

28.0 

36.0 

38.0 

52.0 

87.0 

83.0 

87.0 

16.0 

7.2 

6.6 

47.0 

49.0 

49.0 

262.0 

382.0 

144.0 

7.8 

7.5 

7.8 

37.0 

40.0 

12.7 

13.0 

13.0 

20.6 

22.5 

27.0 

66.7 

65.0 

60.0 

4.2 

3.0 

2.0 

36.8 

38.0 

37.5 

112.0 

94.0 

80.0 

6.8 

6.8 

6.7 

21.0 

23.0 

43.0 

48.0 

50.0 

39.0 

32.0 

30.0 

14.8 

14.0 

20.0 

23.0 

42.0 

58.0 

15.6 

17.0 

20.0 

31.0 

54.0 

29.0 

6.2 

5.5 

6.8 

44.0 

43.0 

0.60 

1.30 

0.60 

-0.10 

-0.20 

0.40 

-0.10 

-0.20 

-0.40 

0.70 

0.70 

2.30 

-0.10 

0.30 

-0.09 

1.70 

4.00 

0.50 

0.08 

0.02 

-0.40 

-0.05 

0.04 

-0.60 

1.90 

-0.20 

-0.30 

-0.20 

0.80 

-0.40 

-0.03 

0.50 

2.90 

1.00 

7.40 

-1.10 

3.00 

-0.40 

5.10 

22.00 

0.50 

-0.70 

-1.00 

-0.40 

-1.10 

-1.00 
†  , 0 to 15 cm sampling depth; 2, 15 to 45 cm sampling depth; 3, 45 to 75 cm sampling depth 

Note: Clay, silt, sand, SOM, EC, pH, and  θv at 2
nd

 and 3
rd

 sampling depth were measured once in June, 

2010. θv at 1
st
 sampling depth was measured bi-weekly from June to October, 2010 

 

45 to 75 cm depth samples compared with the shallowest depth (Tables 4-1 to 4-4) (Jung 

et al., 2005). The HCP and PRP were normally distributed for all four fields (Tables 4-1 

to 4-4). HCP produced higher values compared with PRP at all sites except North River. 

Wild blueberry yield variability was high in 2010. Soybean-barley and pasture yield were 

moderately variable (Table 4-5). 
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Table 4-4 Descriptive statistics of soil properties at Boulden Site 

Properties n Depth† Min. Max. Mean CV 

(%) 

Skewness Kurtosis 

Clay, % 

 

 

Silt, % 

 

 

Sand, % 

 

 

SOM, % 

 

 

θv, m
3
 m

-3 

 

 

 C, μS cm
-1

 

 

 

pH 

 

 

PRP, mS m
-1 

HCP, mS m
-1 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

 

6.0  

2.0  

4.0  

18.0  

16.0  

12.0  

59.0  

56.0  

51.0  

2.8  

1.6  

1.2  

22.0  

17.0  

19.0  

48.0  

48.0  

43.0  

5.4  

6.2  

6.2  

9.0  

13.0  

15.0 

15.0 

14.0 

30.0 

34.0 

35.0 

73.0 

78.0 

81.0 

6.6 

5.6 

5.0 

40.0 

41.0 

42.0 

121.0 

140.0 

691.0 

7.7 

7.8 

8.1 

26.0 

30.0 

9.9 

9.3 

9.0 

24.0 

23.0 

20.0 

66.0 

68.0 

71.0 

4.6 

3.8 

2.2 

30.0 

28.0 

27.8 

83.0 

85.0 

104.0 

6.6 

6.9 

7.0 

17.4 

21.0 

23.0 

32.0 

25.0 

12.0 

20.0 

25.0 

5.4 

8.6 

9.0 

20.0 

24.0 

38.0 

16.0 

18.0 

19.0 

19.0 

28.0 

99.0 

7.0 

6.0 

7.8 

26.2 

20.7 

0.10 

-0.20 

0.20 

0.02 

0.70 

0.80 

-0.01 

-0.50 

-1.20 

0.20 

-0.05 

2.00 

0.70 

-0.80 

0.60 

0.30 

0.80 

5.10 

-0.30 

0.50 

0.50 

0.09 

-0.07 

-0.20 

0.20 

0.02 

0.20 

0.30 

1.50 

-0.50 

-0.20 

2.80 

-0.20 

0.50 

5.00 

-0.40 

0.50 

0.03 

0.30 

0.00 

17.00 

1.00 

-0.40 

-0.60 

-0.80 

-0.60 
†  , 0 to    cm sampling depth   ,    to    cm sampling depth; 3, 45 to 75 cm sampling depth 

Note: Clay, silt, sand, SOM, EC, pH, and θv at 2
nd

 and 3
rd

 sampling depth were measured once in June, 

2010. θv at 1
st
 sampling depth was measured bi-weekly from June to October, 2010. 

 

Table 4-5 Descriptive statistics of crop yield (kg ha
-1

) data 

Field Crop Min.  Max. Mean CV 

(%) 

Skewness Kurtosis 

North River Blueberry 44  6532 1300 96 2.4 7.3 

Carmel Blueberry 180  6272 2085 67 1.1 1.7 

 

BEEC 

Soybean 1136  3456 2454 22 -0.4 0.2 

Barley 1248  3568 2101 23 0.7 0.2 

Boulden Pasture 1074  6140 4081 27 -0.5 0.6 
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4.4.3 Soil Properties Correlated and Regressed to ECa 

Statistically significant correlations between ECa with the sensor at the soil surface (in 

both HCP and PRP array) and soil properties at the experimental sites were compared 

(Tables 4-6 to 4-9). The ECa was significantly positively correlated with clay content 

with correlation values greater at the two deep sampling depths but low correlation value 

was observed. The low value of correlation is because of soil volume measured with 

DualEM-2 is larger than that used for soil sampling. In contrast, ECa was negatively 

correlated with sand content except at BEEC site. Correlations of silt and sand  

Table 4-6 Correlation coefficients among soil properties and ECa at North River Site 

Properties n Depth† PRP HCP 

Clay, % 

 

 

Silt, % 

 

 

Sand, % 

 

 

SOM, % 

 

 

θv, m
3
 m

-3 

 

 

 C, μS cm
-1

 

 

 

pH 
 

50 

35 

7 

50 

35 

7 

50 

35 

7 

50 

35 

7 

50 

35 

7 

50 

35 

7 

50 

35 

7 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

    0.24* 

        0.64** 

     0.68** 

     0.62** 

   0.26* 

   0.76* 

    -0.56** 

  -0.58* 

   -0.82** 

   0.26* 

   0.32* 

   0.58* 

      0.63*** 

    0.67** 

      0.72*** 

  0.37* 

      0.66*** 

     0.82** 

 0.00 

 0.60 

      -0.06 

 0.36* 

  0.64** 

0.26* 

   0.44* 

   0.30* 

   0.14 

  -0.52** 

  -0.58* 

  -0.02 

0.36* 

   0.23* 

 0.80** 

0.56*** 

0.59** 

  0.65*** 

  0.39* 

0.57** 

  0.62** 

 -0.06 

  0.42 

 -0.48 
†  , 0 to    cm sampling depth   ,    to    cm sampling depth; 3, 45 to 75 cm sampling depth 

* Significant at the 0.05 probability level 

** Significant at the 0.01 probability level 

*** Significant at the 0.001 probability level 
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content with ECa were generally non-significant. These results were supported by the 

findings of Mueller et al. (2003).  

Soil texture in the soil profile can be an important factor contributing to ECa (Sudduth et 

al., 2003, 2005). Physical contact between soil particles allows for higher electrical 

conductivity and is known to be greater with clay than with sand- or silt-sized particles 

(Rhoades et al., 1976; Corwin and Lesch, 2003). Therefore, it is not surprising that 

correlations for clay are generally significant as compared to silt and sand contents.  

Table 4-7 Correlation coefficients (r) among soil properties and ECa at Carmel Site 

Properties n Depth† PRP HCP 

Clay, % 

 

 

Silt, % 

 

 

Sand, % 

 

 

SOM, % 

 

 

θv, m
3
 m

-3 

 

 

 C, μS cm
-1

 

 

 

pH 

 
 

50 

43 

9 

50 

43 

9 

50 

43 

9 

50 

43 

9 

50 

43 

9 

50 

43 

9 

50 

43 

9 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

         0.40** 

     0.16 

         0.81** 

       0.30* 

    -0.24 

       0.67* 

        -0.42** 

      0.22 

        -0.81** 

      0.12 

       0.52* 

       0.56* 

         0.64** 

         0.59** 

         0.67** 

       0.55* 

       0.43* 

       0.58* 

    -0.24 

    -0.26 

    -0.38 

 0.24* 

 0.02 

0.65** 

 0.28* 

-0.36 

 0.59* 

-0.32* 

 0.31 

-0.68** 

 0.36* 

 0.60* 

 0.52* 

0.58** 

0.55** 

0.63** 

 0.52* 

 0.41* 

 0.50* 

-0.22 

-0.23 

 0.21 
†  , 0 to    cm sampling depth   ,    to    cm sampling depth   ,    to    cm sampling depth 

* Significant at the 0.05 probability level 

** Significant at the 0.01 probability level 

*** Significant at the 0.001 probability level 

The PRP component was generally more correlated at North River site as compared to 

HCP component (Table 4-6). It might be due to more rocky nature of soils at North River 

Site (Farooque, 2010). As the HCP has more sensing depth so the sand, underlying 
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gravels and crystalline rocks at the deeper depths contribute to HCP resulting weak and 

non-significant correlation with soil properties. The positive significant correlation 

coefficients indicated that with the increase in the soil property, the PRP also increases 

and vice versa. It also showed that DualEM can be used to predict the soil properties in a 

rapid and non-destructive manner. Soil pH was generally not well correlated to ECa in all 

sampling depths, but it was significantly correlated in deepest sampling depth at Boulden 

site. θv was significantly positively correlated with ECa in all of three sampling depths. 

As would be expected, ECa is directly related to θv and clay  Increased clay and θv lead to 

wetter soil conditions while clay has greater water holding capacity and increased ECa). 

EC was also significantly positively correlated and higher values in deeper depths as 

compared to the first sampling depth. Improved correlation was attributed in the deeper 

depths due to the fact that the clay contents were more in these two depths. Tillage also 

affects the first layer, but does not greatly affects the other two layers. ECa was 

significantly positively correlated with SOM and the correlation values for SOM were 

higher in deeper sampling depths in blueberry fields (Tables 4-6 and 4-7) while these 

were higher in shallowest sample depth at BEEC and Boulden site (Tables 4-8 and 4-9). 

The low correlation coefficient and R
2
 values somewhere can be explained as follows: 

 It is possible that ECa is highly governed by soil property (Allred et al., 2005) not 

listed in Tables 4-1 to 4-4 and it is clear on the basis of results that ECa is not 

affected by a single soil property but more than one soil properties contributing 

and influencing the ECa measurements. 

 The ECa measured with EMI methods is an effective value for a large soil 

volume, and the overall properties of this large volume might not be well 
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represented by a relatively small soil sample (Allred et al., 2005; Ristolainen et 

al., 2009). 

Soil properties at each sampling depth were regressed against ECa. Coefficients of 

determination, R
2
, for linear and cubic regression model between ECa and soil properties 

were calculated. Cubic regression models were found to be best fit to predict soil 

properties using ECa. 

Table 4-8 Correlation coefficients (r) among soil properties and ECa at BEEC Site 

Properties n Depth† PRP HCP 

Clay, % 

 

 

Silt, % 

 

 

Sand, % 

 

 

SOM, % 

 

 

θv, m
3
 m

-3 

 

 

 C, μS m
-1

 

 

 

pH 

 
 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

       0.56* 

       0.51* 

       0.68* 

    -0.24 

    -0.06 

       0.54* 

     0.26 

     0.04 

     -0.54* 

        0.60** 

      0.002 

    0.12 

0.74*** 

0.70*** 

0.78*** 

    0.22 

      0.44* 

0.74*** 

     0.24 

     0.16 

     0.24 

  0.56* 

  0.51* 

  0.59* 

 -0.48* 

 -0.22 

  0.40* 

  0.46* 

  0.16 

 -0.36* 

  0.70** 

  0.08 

  0.04 

0.69*** 

0.65*** 

0.72*** 

  0.22 

  0.42* 

0.68*** 

  0.24 

  0.10 

  0.26 
†  , 0 to    cm sampling depth   ,    to    cm sampling depth   ,    to    cm sampling depth 

* Significant at the 0.05 probability level 

** Significant at the 0.01 probability level 

*** Significant at the 0.001 probability level 

At the deepest sampling depth, predictions of many soil properties were improved using a 

cubic model of ECa instead of the simple linear regression. For example, prediction of 

clay content in the surface sample at Carmel Site was greatly improved by using the 

cubic model (coefficient of determination improved from 43 to 78 %). In general, soil 
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properties were better estimated from the ECa cubic model. Using a similar approach, 

other transformations of ECa were considered such as log, quadratic and exponential 

models. Regressions using these transformed terms almost always gave a coefficient of 

determination less than models using a cubic term.  

Table 4-9 Correlation coefficients (r) among soil properties and ECa at Boulden Site 

Properties n Depth† PRP HCP 

Clay, % 

 

 

Silt, % 

 

 

Sand, % 

 

 

SOM, % 

 

 

θv, m
3
 m

-3 

 

 

 C, μS m
-1

 

 

 

pH 

 
 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

     0.16 

        0.74** 

      0.72* 

      0.50* 

      0.56* 

      0.72* 

     -0.48* 

       -0.80** 

       -0.86** 

0.75*** 

0.69*** 

      0.34* 

0.72*** 

0.78*** 

0.69*** 

      0.40* 

       0.76** 

      0.70* 

      0.32* 

    0.32 

      0.43* 

  0.12 

  0.66* 

  0.40* 

  0.14 

  0.56* 

  0.36* 

 -0.16 

 -0.74** 

 -0.44* 

0.80*** 

0.68*** 

   0.23 

0.89*** 

0.91*** 

0.83*** 

 0.74** 

   0.54* 

0.84*** 

   0.43* 

   0.34 

  0.63*** 
†  , 0 to    cm sampling depth  2, 15 to 45 cm sampling depth; 3, 45 to 75 cm sampling depth 

* Significant at the 0.05 probability level 

** Significant at the 0.01 probability level 

*** Significant at the 0.001 probability level 
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Table 4-10 Calibration models using ECa to predict soil properties at North River Site 

Depth† Property n Model R
2 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

3 

3 

3 

3 

Clay, % 

Silt, % 

Sand, % 

SOM, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

Clay, % 

SOM, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

Clay, % 

SOM, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

50 

50 

50 

50 

50 

50 

35 

35 

35 

35 

7 

7 

7 

7 

3.4+3.80HCP-0.24HCP
2
+0.005 HCP

3 

25.3+1.80PRP+ 0.007PRP
2
 -0.003PRP

3 

81.3-4.2PRP+0.24PRP
2
 -0.006PRP

3 

9.2+0.58HCP-0.12HCP
2
+0.004HCP

3 

11.4+2.9PRP-0.05PRP
2
-0.008PRP

3 

47.7-0.4HCP+0.62HCP
2
-0.03HCP

3 

7.26+3.07HCP-0.8HCP
2
 +0.04 HCP

3 

2.98 – 23.6 PRP 

13.8+2.2PRP-0.07PRP
2
-0.008PRP

3 

51.7-8.6PRP+1.9PRP
2
 -0.12PRP

3 

9.4+5.55HCP-0.63HCP
2
 -0.01 HCP

3 

2.7+3.56HCP-0.47HCP
2
 +0.09 HCP

3 

23.2+4.5HCP-1.6HCP
2
-0.07HCP

3 

58.5-6.4HCP-0.71HCP
2
 +0.4HCP

3 

0.46 

0.70 

0.61 

0.44 

0.75 

0.45 

0.69 

0.43 

0.73 

0.72 

0.74 

0.88 

0.82 

0.87 
† 1, 0 to 15 cm sampling depth; 2, 15 to 45 cm sampling depth; 3, 45 to 75 cm sampling depth 

 

Table 4-11 Validation models using 2
nd

 year data at North River Site 

Depth† Property n Model R
2 

RMSE 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

3 

3 

3 

3 

Clay, % 

Silt, % 

Sand, % 

SOM, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

Clay, % 

SOM, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

Clay, % 

SOM, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

7 

7 

7 

7 

3.9-0.89HCP+0.39HCP
2
-0.02 HCP

3 

32.9-2.98PRP+0.46PRP
2
 -0.02PRP

3 

65.7+1.2PRP-0.33PRP
2
 +0.01PRP

3 

8.9+0.40HCP-0.12HCP
2
+0.01HCP

3 

10.9+2.9PRP-0.12PRP
2
-0.001PRP

3 

49.6+0.6HCP+0.52HCP
2
-0.04HCP

3 

8.8+1.8HCP-0.2HCP
2
 +0.006 HCP

3 

3.3+ 0.06 PRP-0.002PRP
2
 -PRP

3 

15.9+3.6PRP-0.04PRP
2
-0.01PRP

3 

56.5-5.6PRP+1.5PRP
2
 -0.06PRP

3 

7.0+6.4HCP-0.47HCP
2
 -0.03 HCP

3 

1.4+1.05HCP-0.3HCP
2
 +0.03 HCP

3 

21.2+3.9HCP-1.9HCP
2
-0.04HCP

3 

56.8-4.6HCP-0.37HCP
2
 +0.10HCP

3 

0.40 

0.55 

0.48 

0.39 

0.77 

0.41 

0.55 

0.34 

0.68 

0.59 

0.67 

0.82 

0.78 

0.80 

2.6 

3.7 

5.3 

0.7 

3.0 

8.8 

2.1 

0.5 

3.4 

6.8 

2.0 

0.4 

3.1 

5.2 
†  , 0 to    cm sampling depth   ,    to    cm sampling depth   ,    to 75 cm sampling depth 

 

The selected soil properties correlated significantly with ECa in blueberry fields (R
2
 

varied from 0.43 to 0.90; P < 0.05), BEEC field (R
2
 varied from 0.49 to 0.88; P < 0.05) 

and Boulden field (R
2
 varied from 0.40 to 0.91) (Tables 4-10, 4-12, 4-14 and 4-16). The 

correlation between actual and predicted soil properties in blueberry fields (R
2
 varied 

from 0.34 to 0.82; P < 0.05; RMSE ranged from 0.4 to 8.8), BEEC field (R
2
 varied from  
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Table 4-12 Calibration models using ECa to predict soil properties at Carmel Site 

Depth† Property n Model R
2 

1 

1 

1 

2 

2 

2 

3 

3 

3 

3 

Clay, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

SOM, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

Clay, % 

SOM, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

50 

50 

50 

43 

43 

43 

9 

9 

9 

9 

8.6 + 20.9 PRP 

25.7 + 30.2 PRP 

68.4 - 5.6PRP + 3.50PRP
2
 – 0.45PRP

3 

4.2+0.86HCP -0.24HCP
2
 +0.014HCP

3 

25.6-4.8HCP+3.2HCP
2
 -0.05HCP

3 

65.5-10.4PRP+3.8PRP
2
 -0.22 PRP

3 

26.2-12.4PRP+4.56PRP
2
 -0.44 PRP

3 

5.2+0.8HCP -0.38HCP
2
 +0.04HCP

3 

22.5-9.9PRP+4.2PRP
2
 -0.8 PRP

3 

44.8+ 4.2HCP - 0.88HCP
2
 + 0.02 HCP

3 

0.48 

0.73 

0.60 

0.65 

0.70 

0.47 

0.90 

0.61 

0.75 

0.63 
†  , 0 to    cm sampling depth   ,    to    cm sampling depth   ,    to    cm sampling depth 

 

Table 4-13 Validation models using 2
nd

 year data at Carmel Site 

Depth† Property n Model R
2 

RMSE 

1 

1 

1 

2 

2 

2 

3 

3 

3 

3 

Clay, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

SOM, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

Clay, % 

SOM, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

20 

20 

20 

20 

20 

20 

9 

9 

9 

9 

6.4-0.5 PRP+0.35PRP
2
 -0.04PRP

3 

21.7+1.58 PRP+0.03PRP
2
-0.02PRP

3 

70.2 -5.3PRP + 2.0PRP
2
-0.18PRP

3 

2.3+0.7HCP-0.14HCP
2
 +0.008HCP

3 

23.8-5.3HCP+3.7HCP
2
 -0.08HCP

3 

58.9-11.9PRP+4.2PRP
2
 -0.37 PRP

3 

23.3-10.6PRP+2.8PRP
2
 -0.16 PRP

3 

2.6+0.5HCP -0.21HCP
2
 +0.02HCP

3 

24.8-7.6PRP+3.0PRP
2
 - PRP

3 

41+3.8HCP-0.65HCP
2
 +0.03 HCP

3 

0.42 

0.68 

0.51 

0.59 

0.62 

0.47 

0.78 

0.50 

0.66 

0.72 

2.3 

2.5 

5.6 

0.5 

2.4 

6.9 

1.9 

0.5 

2.8 

4.8 
†  , 0 to    cm sampling depth   ,    to    cm sampling depth   ,    to    cm sampling depth 

 

Table 4-14 Calibration models using ECa to predict soil properties at BEEC Site 

Depth† Property n Model R
2 

1 

1 

1 

2 

2 

2 

3 

3 

3 

Clay, % 

SOM, % 

θv, m
3
 m

-3 

Clay, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

Clay, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

50 

50 

50 

50 

50 

50 

50 

50 

50 

5.22+3.4HCP-0.18HCP
2
 + 0.005HCP

3 

4 -0.06HCP+0.005HCP
2
-0.00008 HCP

3 

28.2-0.54PRP+0.03PRP
2
 - 0.0007 PRP

3 

10.55 + 28.68 PRP 

25.50 + 32.67 PRP 

36.23 + 24.44 PRP 

3.55+4.5PRP-0.22PRP
2
 +0.003 PRP

3 

30.48-0.77PRP+0.12PRP
2
 - 0.006 PRP

3 

16.2+10.8PRP-0.52PRP
2
 +0.009PRP

3 

0.61 

0.76 

0.81 

0.56 

0.70 

0.49 

0.73 

0.88 

0.79 
†  , 0 to    cm sampling depth   ,    to    cm sampling depth   ,    to    cm sampling depth 
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Table 4-15 Validation models using 2
nd

 year data at BEEC Site 

Depth† Property n Model R
2 

RMSE 

1 

1 

1 

2 

2 

2 

3 

3 

3 

Clay, % 

SOM, % 

θv, m
3
 m

-3 

Clay, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

Clay, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

20 

20 

20 

20 

20 

20 

20 

20 

20 

3.3+2.6HCP-0.12HCP
2
 +0.002HCP

3 

3.0-0.20HCP+0.01HCP
2 
-0.001 HCP

3 

36.9-1.6PRP+0.11PRP
2
 - 0.002 PRP

3 

17.7-0.7 PRP+0.02PRP
2
 - 0.002PRP

3 

32.2-2.4PRP+0.2PRP
2
 - 0.004 PRP

3 

86.0- 2.3 PRP+0.2PRP
2
 - 0.003PRP

3 

2.8+3.1PRP-0.15PRP
2
 +0.005 PRP

3 

27.6-0.8PRP+0.18PRP
2
 -0.002 PRP

3 

61.0-0.04PRP+0.05PRP
2
 -0.002PRP

3 

0.52 

0.65 

0.74 

0.51 

0.64 

0.47 

0.65 

0.80 

0.58 

2.2 

0.6 

2.7 

3.0 

3.5 

13.8 

2.7 

2.2 

9.1 
†  , 0 to    cm sampling depth   ,    to    cm sampling depth   ,    to    cm sampling depth 

 

Table 4-16 Calibration models using ECa to predict soil properties at Boulden Site 

Depth† Property n Model R
2 

1 

1 

1 

1 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

SOM, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

pH 

Clay, % 

Sand, % 

SOM, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

Clay, % 

Sand, % 

SOM, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

pH 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

6.34-0.5HCP+0.07HCP
2
 – 3.77 HCP

3 

128-18.4HCP+0.88HCP
2
 - 0.05HCP

3 

312- 32HCP + 2.4HCP
2
 - 0.045 HCP

3 

8.22 + 17.4 HCP 

5.2+0.88PRP+0.042PRP
2
 -0.008PRP

3 

50.4 – 34.6 PRP 

2.32 + 26.2 PRP 

132-24.2HCP+0.56HCP
2
 - 0.06HCP

3 

212+46.6PRP-4.23PRP
2
+ 0.08PRP

3 

37 +8.8PRP-0.58PRP
2
 + 0.012PRP

3 

134- 20.3PRP + 3.3PRP
2
 - 0.05 PRP

3 

0.72 + 22.4 PRP 

120-16.4HCP+1.44HCP
2
 - 0.09HCP

3 

318+52.2HCP-8.2HCP
2
 +0.04HCP

3 

10.2-0.66HCP+0.08HCP
2
 - HCP

3 

0.83 

0.91 

0.84 

0.47 

0.79 

0.70 

0.64 

0.90 

0.80 

0.77 

0.90 

0.40 

0.86 

0.89 

0.68 
†  , 0 to    cm sampling depth   ,    to    cm sampling depth   ,    to    cm sampling depth 

 

0.47 to 0.80; P < 0.05; RMSE ranged from 0.6 to 13.8) and Boulden field (R2 varied from 

0.39 to 0.83; P < 0.05; RMSE ranged from 0.4 to 9.7) was also significant (Tables 4-11, 4-

13, 4-15 and 4-17).root mean square error (RMSE) between observed and predicted soil 

properties, are shown for these selected models (Tables 4-11, 4-13, 4-15 and 4-17). We 

conclude that the models derived from soil ECa could provide reasonable estimates of 

these soil properties. 
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Table 4-17 Validation models using 2
nd

 year data at Boulden Site 

Depth† Property n Model R
2 

RMSE 

1 

1 

1 

1 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

SOM, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

pH 

Clay, % 

Sand, % 

SOM, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

Clay, % 

Sand, % 

SOM, % 

θv, m
3
 m

-3 

 C, μS m
-1

 

pH 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

9.1-1.0HCP+0.04HCP
2
 - 0.001 HCP

3 

161-19.8HCP+0.93HCP
2
 - 0.01HCP

3 

229- 24HCP + 1.1HCP
2
 - 0.016 HCP

3 

0.2+0.8 HCP-0.03HCP
2
 + 0.004HCP

3 

5.3-1.0PRP+0.13PRP
2
 -0.003PRP

3 

58.3+2.0 PRP-0.09PRP
2
+0.0005PRP

3 

0.87+0.24 PRP-0.02PRP
2
+0.005PRP

3 

144-27.2HCP+0.43HCP
2
 - 0.03HCP

3 

178+45.1PRP-2.6PRP
2
+ 0.05PRP

3 

33 +7.0PRP-0.38PRP
2
 + 0.007PRP

3 

171- 17.5PRP + 1.1PRP
2
 - 0.02 PRP

3 

7.4-1.3PRP+0.08PRP
2
-0.002PRP

3 

135-14.2HCP+2.6HCP
2
 - 0.04HCP

3 

472+75.5HCP-8.9HCP
2
 +0.06HCP

3 

1.9+0.6HCP-0.02HCP
2
 +0.004 HCP

3 

0.77 

0.83 

0.76 

0.48 

0.72 

0.64 

0.58 

0.82 

0.68 

0.68 

0.67 

0.39 

0.79 

0.81 

0.60 

0.4 

2.6 

9.2 

0.5 

2.3 

5.8 

0.5 

2.4 

9.7 

2.4 

4.5 

0.8 

2.7 

8.8 

0.4 
†  , 0 to    cm sampling depth   ,    to    cm sampling depth; 3, 45 to 75 cm sampling depth 

 

 4.4.4 Soil Properties and ECa Correlated to Crop Yield 

Understanding the variability of soil properties
 
and their effect on crop yield is a major 

component of site-specific
 
management systems (Li et al., 2008). In agricultural fields, 

yield variability is partly caused by
 
soil variability and topographic features of the field.

 

Although yield is a function of many factors, including
 
soil properties, topography, 

climate, biological factors,
 
and management practices, in certain years as much as 60% or 

even more
 
of the yield variability can be explained by a combination of

 
soil properties 

and topographic features (Sanderson et al., 1996; Yang et al., 1998; Kravchenko and 

Bullock, 2000; Gagnon et al., 2003; Farooque et al., 2012). Soil properties can
 
have a 

direct effect on crop growth and yield by redirecting
 
and changing nutrients and water 

availability. Therefore, it is important to investigate
 
the effect of soil properties on crop 

yield. 

Statistically significant correlation coefficients of soil properties to crop yield are 

provided (Table 4-18). Silt and sand were correlated with yield at the 45 to 75 cm depth; 
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θv was more correlated at 0 to 15 cm depth than the other soil properties at different 

depths, and clay was correlated at 15 to 45 cm depth in North River Site. Silt, sand and 

SOM were correlated with yield in Carmel Site at the 45 to 75 cm depth; θv and pH were 

also correlated at 0 to 15 cm depth while clay was negatively correlated at 15 to 45 cm 

depth. In wild blueberry fields, soil properties were not generally significantly correlated 

to fruit yield at the 0 to 15 cm where the rhizomes of this crop present. But at the first 

depth, PRP, pH and θv showed negative significant correlation with wild blueberry yield 

indicating that increasing in these properties results in decreasing the yield. As this crop 

likes the sandy and well-drained soils, so the PRP and θv were higher in the clayey areas 

of the field because of more holding capacity of clay as compared to sand. There is 

several other factors affect yield variability, which have not been recorded and addressed. 

Disease and insect damage are obvious examples. Esau (2012) compared wild blueberry 

fields with control and fungicides application treatments, he found that fungicides 

significantly impact fruit yield. Weeds competing with wild blueberry, pollination, 

seasonal variability and winter kill can also negatively impact fruit yield (Farooque et al., 

2011). 

Silt and sand were correlated with yield at 0 to 15 cm depth in BEEC Site in 2010. θv and 

SOM were also correlated at 15 to 45 cm depth, and clay was correlated at 45 to 75 cm 

depth while EC and pH were not correlated at BEEC Site at any depth in 2010. In 2011, 

only sand, SOM, θv and  C were positively correlated with yield. The first three 

parameters were correlated at 0 to 15 cm and EC was at 15 to 45 cm depth. The 

parameters correlated at various depths at Boulden Site were similar as at BEEC Site in 
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Table 4-18 Correlation coefficients (r) among soil properties and crop yield 

Properties Depth† Blueberry Blueberry Soybean Barley Pasture 

  North 

River 

Carmel BEEC BEEC Boulden 

Clay, % 

 

 

Silt, % 

 

 

Sand, % 

 

 

SOM, % 

 

 

θv, m
3
 m

-3 

 

 

 C, μS m
-1

 

 

 

pH 

 

 

PRP 

HCP 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

    -0.20 

      -0.74* 

    -0.36 

    -0.58 

    -0.26 

      -0.86* 

     0.48 

     0.60 

       0.86** 

    0.28 

    0.32 

    0.46 

-0.68** 

   -0.56 

   -0.47 

    0.46 

    0.44 

    0.10 

   -0.36* 

  -0.50 

    -0.81* 

    -0.52* 

  -0.20 

   -0.46 

-0.87*** 

   -0.72* 

    0.05 

   -0.35 

 -0.80** 

    0.32 

    0.46 

  0.89** 

    0.06 

    0.06 

0.81* 

   -0.30* 

   -0.26 

   -0.29 

    0.08 

0.60* 

    0.30 

  -0.34* 

  -0.26 

  -0.56* 

  -0.35* 

  -0.21 

0.10 

    0.04 

0.48** 

-0.56** 

0.05 

0.22 

  0.40* 

0.16 

0.12 

 0.38* 

   0.56** 

    0.36 

    0.05 

  0.44* 

0.37 

0.18 

    0.08 

0.06 

-0.08 

-0.24 

-0.10 

  -0.30* 

-0.17 

  0.20 

  0.08 

  0.06 

 -0.26 

  0.12 

  0.18 

0.32* 

  0.16 

  0.16 

0.46* 

  0.02 

  0.20 

0.36* 

  0.23 

  0.41 

  0.12 

0.64* 

  0.22 

 -0.34 

 -0.26 

 -0.02 

-0.60** 

 -0.34 

    0.14 

    0.30 

0.62* 

0.64* 

    0.58 

    0.20 

-0.58* 

   -0.34 

   -0.40 

   0.18 

0.34* 

    0.22 

    0.10 

0.26* 

    0.18 

    0.12 

    0.26 

   -0.30 

    0.08 

    0.30 

   -0.52 

    0.22 

    0.20 
†  , 0 to    cm sampling depth   ,    to    cm sampling depth; 3, 45 to 75 cm sampling depth 

* Significant at the 0.05 probability level. 

** Significant at the 0.01 probability level. 

*** Significant at the 0.001 probability level. 

2010. The PRP was negatively correlated at BEEC sites, but non-significantly correlated 

at Boulden Site. The results were supported by the findings of Jung et al. (2005). 

Correlation coefficient only indicates linear relationships but significant non-linear 

relationships may exist between soil properties and yield. Soil properties and crop yield 

vary spatially within field, among fields, and from year to year on a farm (Jaynes, et al., 

1995). There are many factors including site characteristics, crop management, and 

climate, which can affect crop yield and quality (Patzold et al., 2008; Wong and Asseng, 



49 
 

2006). Factors other than soil properties were not measured like water holding capacity 

which is usually a significant contributor to crop yield (Lund et al., 2000). Jung et al. 

(2005) reported that rainfall affects yield more than variations in soil properties. Another 

factor that must be considered is that soil properties and yield correlations may invert 

from year to year, depending on rainfall (Jaynes, et al., 1995). This same phenomenon is 

one that must be dealt with when normalizing and averaging multiple years of yield data 

(Kitchen, et al., 1999). It has been shown that 7 to 10 years of yield data may be needed 

in order to develop yield goals effectively based solely on soil properties maps 

(Lutticken, 1998), and other research has discovered that yields are not steady after six 

years of examining (Colvin, et al., 1997). 

4.4.5 Interpolation and Mapping of Soil Properties 

The soil properties, fields boundary and ECa data were imported into ArcGIS 10 software 

(ESRI, Redlands, CA) and shape files were created for visual display of North River Site 

(Figures 4-5 and 4-6), Carmel Site (Figures 4-7 and 4-8), BEEC Site (Figures 4-9 and 4-

10) and Boulden Site (Figures 4-11 and 4-12).  

GIS combined with geo-statistics was applied to analyze the spatial variability in soil 

properties for all fields. Soil parameters were interpolated using kriging combined with 

semivariogram parameters to generate detailed maps. Schumann and Zaman, (2003) 

showed that the kriged estimates were very close to the measured estimates in Florida 

citrus groves. The kriging interpolation is considered to be more accurate and reliable 

than other methods such as inverse distance weighting (IDW) or trend surface models 

(Mulla et al., 1992). The maps of soil properties were generated using ArcGIS 10 
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software at the same scale and equal number of classes in order to allow easier 

comparison. 

The interpolated maps of HCP, PRP, θv, EC, SOM, sand, silt and clay at North River Site 

(Figures 4-5 and 4-6) showed gradual spatial variability with significantly different 

values across the field. Spatial patterns of variation for PRP, HCP, θv, EC, silt and clay 

(Figures 4-5 and 4-6) were almost similar, showing higher value in the northwest, north 

central region, and medium values were generally observed in the south eastern region of 

the field. The lower values were observed in the center of the field. The variation in soil 

properties might be due to the variation in elevation with the high values of these soil 

parameters in low lying areas and vice versa. These results were in agreement with the 

findings of Farooque et al. (2011). 

The map of SOM (Figure 4-6) at North River Site indicated the substantial variation 

across the field. The map of sand content showed lower values in the northwest and 

southeast region of the field. Higher values were observed in southwest, southeast and 

south central region indicating textural variation within field. It was observed that most of 

the crop areas were contained with more sand than clay for North River Site. The ground 

inspections revealed that the areas with higher clay content within field were weeds, bare 

spots and grasses. 
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Figure 4-5 Maps of HCP, PRP, clay and θv for North River Site 
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Figure 4-6 Maps of SOM, EC, sand and silt for North River Site 

 

The interpolated maps of HCP, PRP, pH, EC, SOM, sand, silt and clay at Carmel Site 

(Figures 4-7 and 4-8) showed gradual spatial variability with significantly different 

values across the field. Spatial patterns of variation for HCP, PRP, SOM and sand 

(Figures 4-7 and 4-8) were almost similar, showing higher value in the north and lower 
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values in the southwest and south central part of the field. The medium values were 

observed in the center of the field. The maps of HCP, PRP, SOM, clay and EC indicated 

the large spatial variability of these soil properties within field.  

 

  

  
Figure 4-7 Maps of HCP, PRP, clay and pH for Carmel Site 
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Figure 4-8 Maps of SOM, EC, sand and silt for Carmel Site 

 

The map of silt content indicated that this soil property was less variable as compare to 

the other soil properties (Figure 4-8). The lower values for the pH were observed in the 

south part of the field, and higher values were observed in the upper center of the field. 

The soil pH map indicated that the most of the Carmel Site having the pH ranging from 
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5.05 to 5.40 (Figure 4-7). Overall the maps of soil properties indicated the large spatial 

variation within field.  

 

  

  
Figure 4-9 Maps of HCP, PRP, clay and θv for BEEC Site 
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The interpolated maps of HCP, PRP, θv,  C, SOM, sand, silt and clay at BEEC Site 

(Figures 4-9 and 4-10) showed gradual spatial variability with significantly different 

values across the field. Spatial patterns of variation for PRP, HCP and θv   igure  -9) 

were almost similar, showing higher value in the northeast and north region, and medium 

values were generally observed in the center of the field from north to south. The lower 

values were observed in the northwest and west of the field. The variation in soil 

properties might be due to the variation in elevation with the high values of these soil 

parameters in low lying areas and vice versa. 

The map of SOM, sand and silt (Figure 4-10) at BEEC Site indicated the substantial 

variation across the field. The map of SOM content showed lower values in the northwest 

and north region of the field. Higher values were observed in northeast region indicating 

variation within field.  

The interpolated maps of HCP, PRP, θv, EC, SOM, sand, silt and clay at Boulden Site 

(Figures 4-11 and 4-12) showed gradual spatial variability with significantly different 

values across the field. Spatial patterns of variation for HCP, PRP, SOM, θv and EC 

(Figures 4-11 and 4-12) were almost similar, showing higher value in the north and south, 

and lower values in the west and east part of the field. The medium values were observed 

in the center of the field. The maps of HCP, PRP, SOM, clay, θv, sand, silt and EC 

indicated the large spatial variability of these soil properties within field.  

The lower values for the sand content were observed in the central part of the field, and 

higher values were observed in the northeast and northwest of the field. The HCP and 

PRP maps indicated that the most of the Boulden Site having the apparent ground 
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conductivity ranging from 18.00 to 30.00 (Figure 4-11). Overall the maps of soil 

properties indicated the large spatial variation within field. 

  
  

  

  
 

 

 

 
 

 

 

 

 
 

 

 

 

  
Figure 4-10 Maps of SOM, EC, sand and silt for BEEC Site 
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Figure 4-11 Maps of HCP, PRP, clay and θv for Boulden Site 
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Figure 4-12 Maps of SOM, EC, sand and silt for Boulden Site 

 

4.5 Conclusion 

The procedure of measuring ECa using DualEM provided the best relationship between 

ECa and soil properties with the top 75 cm on a field. The ECa can provide important 

information for characterizing soil properties. In this study, we compared soil physical 
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and chemical properties to ECa during two years for four agricultural fields. We found 

that ECa was significantly correlated to some soil properties (clay content, θv, SOM, and 

EC). Most regressions were significantly improved using a cubic term in ECa, when using 

ECa to predict soil properties. Approximately 60-90% of the variation in clay for the 45 

to 75 cm depth could be predicted using ECa. Regression models were validated with soil 

sample data set (n = 20). Soil properties were similar between measured and predicted 

soil properties. 

This study showed that while soil properties varied greatly by depth, ECa were 

significantly correlated with soil properties, especially some physical properties that 

impact crop yield. It was concluded that ECa has the ability to serve as a soil quality 

indicator for soil productivity. 
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CHAPTER 5   ESTIMATION OF LAYERED SOIL PROPERTIES 

5.1 Introduction 

EMI is a method that measures the ECa by inducing an electric current in the soil (Saey et 

al., 2009). ECa is controlled by a combination of soil properties, such as moisture content, 

concentration of dissolved electrolytes in the soil solution, and the quantity and 

composition of colloids (McNeill, 1980a). The main benefits of EMI are: (i) non-invasive 

and (ii) a rapid response. These properties have made EMI instruments very famous for 

the inventory of lateral variations in subsurface soil properties. Generally, EMI is most 

popularl in areas with a single dominant factor of soil variability. Changes in EMI 

response can be directly related to variations in the dominant property (Doolittle and 

Collins, 1998).  

Previous studies linked the ECa to the depth and thickness of soil horizons (Doolittle et 

al., 1994; Bork et al., 1998; Inman et al., 2002; Saey et al., 2008), soil moisture content 

(Brevik et al., 2006; Huth and Poulton, 2007), clay content (McBratney et al., 2005; 

Triantafilis and Lesch, 2005), and soil salinity (Lesch et al., 1998; Amezketa, 2006, 

2007). In all of these investigations, single coil spacing was used to develop a 

relationship between the property of interest and ECa. The depth of investigation in EMI 

is measured by the coil spacing, coil orientation and frequency of the induced current 

(Gebbers et al., 2007). Most of the EMI instruments have a fixed frequency, the only 

option to measure the depth of investigation is coil orientation and coil spacing. 

Therefore, co-localized instruments attributed to multiple coil spacing or coil orientations 

provide more information in depth (Saey et al., 2009). Triantafilis et al. (2003) utilized 

the ratio between ECa measurements of EM31 and EM38 instruments, which vary in coil 

spacing and frequency, to conclude a subsurface clay layer underlying sandier sediments 
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in a previous stream channel. Less research has been done to utilize the possibilities of 

the DualEM geo-conductivity sensors. Mostly, these have multiple coil spacing and 

multiple coil orientations, providing simultaneous measurements with different depth 

sensitivity (Saey et al., 2009). 

It was observed during the soil sampling there was a compact gravel layer below the soil 

surface in selected wild blueberry fields. It was also found that the compaction of gravels 

was gradually increased as the sampling depth increased. Wild blueberries develop best 

in acidic, infertile and well drained soils. Soil textures vary from sandy to very coarse 

gravelly material (Eaton and Jensen, 1996). Soil erosion in blueberry fields occurs as a 

result of rainfall and runoff water moving fine soil particles away from blueberry plants 

and depositing them in lower areas of the field, causing the appearance of increased 

amount of gravels (Eaton and Jensen, 1996). Due to continuous erosion, the gravel layer 

reaches near to soil surface until the blueberry rhizomes and roots exposes to air. After 

exposing, blueberry roots and rhizomes quickly wither and die. The phenomenon is most 

evident in Nova Scotia and Maine. In order to estimate the interface to these gravels, the 

soils at blueberry sites were considered as two layer (i.e., the first layer was above the 

gravel formation and the second was underlying the first one). Similarly, two layer soils 

was assumed and considered at BEEC and Boulden site with respect to water table. In 

this case, the first layer was the unsaturated zone above the water table and the second 

layer was the saturated zone below the water table. The objective of this chapter was to 

characterize the depth to the interface between two contrasting soil layers with the help of 

EMI. 
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5.2 Materials and Methods 

5.2.1 Study Sites and their Geology 

The research sites were located in central Nova Scotia, Canada. The soil at both the North 

River and Carmel Sites is classified as sandy loam (Orthic Humo-Ferric Podzols), which 

is a well-drained acidic soil. These acidic soils, known as “Truro   ”, are mostly found in 

the Colchester County of Nova Scotia, Canada (Webb et al, 1991). These soils have 

developed on fine sandy glaciofluvial sediments. They are found on level to strong slopes 

(0-30%). They are non-stony to slightly stony, and non-rocky.  These soils have 50-80 

cm of friable, coarse loamy, soil over loose, fine sandy lower soil material. The soil at 

BEEC Site consists of “Debert   ” and “Pugwash   ” soil groups   ebb and  angille, 

1996). Debert 22 soils have 20-50 cm of friable, coarse loamy soil over firm, coarse 

loamy, lower soil material. They are imperfectly drained and are found on very gentle 

slopes (2-5%). Pugwash 82 soils are well drained and have greater than 80 cm of friable, 

coarse loamy, soil over firm, coarse loamy, lower soil material. These are also found on 

very gentle slopes. The soil at Boulden Site is of “Debert   ” soil group   ebb et al., 

1991). These soils have 50-80 cm of friable, coarse loamy, soil over firm, coarse loamy, 

lower soil material. They are also imperfectly drained and are found on level to very 

gentle slopes (0-5%). 

5.2.2 Cumulative Depth Response of EMI Sensors 

For the DualEM-2, the cumulative response of a layered medium up to a depth z (m) 

below the sensor was given by Wait (1962) and McNeill (1980b), for the horizontal 

[Rh(z)] and perpendicular [Rp(z)] modes: 

  ( )     [ 
  

  
  ]

    

                     (1)                     
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                     (2) 

with s being the transmitter-receiver spacing. Two different cumulative depth response 

profiles were established based on the different spacing between the transmitter and 

receiver coils. 

The cumulative response relative to an increase in z of the two coil configurations 

(horizontal [Rh] and perpendicular [Rp]) of the DualEM-2 was developed (Figure 5-1). 

The general shape of all cumulative sensitivity distributions as developed by Callegary et 

al. (2007) was similar to that predicted by McNeill (1980a), especially at deeper depths. 

Under electrically conductive conditions, lower cumulative responses were detected by 

Callegary et al. (2007) than McNeill (1980a), especially at deeper depths. Therefore, the 

models expressed by McNeill (1980a) gave a truthful representation of the depth to the 

interface at a shallow depth between two layers. 

Based on the exponential form of the cumulative response curves, the depth of 

exploration (DOE) can be described as the depth where 70% of the response is attained 

from the soil volume above this depth. This DOE increases for the various coil 

configurations: PRP, 1 m and HCP, 3.18 m (Figure 5-1). 

5.3 Results and Discussion 

5.3.1 EMI Survey 

The summary statistics of the DualEM-2 ECa measurements recorded at the study sites 

are provided (Table 5-1). The means of the ECa values recorded with coil configurations 

that gave a larger weight to deeper soil layers were the largest: HCP > PRP. The CV of 

these signals was smaller at BEEC and Boulden Sites. This designates 
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Figure 5-1 Cumulative response as a function of the depth z for the DualEM-2 in the 

2.1-m perpendicular and 2-m horizontal configurations 

 

that at these sites, the subsoil can be considered more conductive and less heterogeneous 

than the top soil. While the CV of the ECa was higher at North River and Carmel Sites 

directing that the subsoil can be more heterogeneous than the topsoil (Saey et al., 2009). 

Table 5-1 Descriptive statistics of the ECa for the different coil configurations of the 

DualEM-2 

Site Coil 

configuration 

Min. Max Mean CV (%) Skewness Kurtosis 

North 

River 

HCP 

PRP 

0.0  

0.0  

24 

24 

4.4 

3.4 

86 

86 

0.90 

1.50 

0.7 

3.5 

Carmel HCP 

PRP 

0.0  

0.0  

12 

11 

5.4 

2.9 

50 

57 

-0.20 

0.30 

-0.4 

0.1 

BEEC HCP 

PRP 

3.4  

0.0  

44 

48 

22.0 

19.0 

39 

43 

0.30 

0.40 

-0.6 

-0.6 

Boulden HCP 

PRP 

9.1  

7.7  

34 

30 

22.0 

17.0 

20 

24 

0.02 

0.40 

-0.4 

-0.2 
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5.3.2 DualEM-2 

To calibrate HCP and PRP with the depth to the interface (zin) between the upper layer 

material and gravel substrate, and unsaturated and saturated layers, manual measurements 

of gravel and water table depths were used. The locations for manual measurements were 

selected in such a way that both highest and lowest ECa value areas within the fields were 

covered. The depth to the gravel was measured at 50 observation points in each of the 

North River and Carmel sites and the depth to water table was measured at 30 

observation points in each of the BEEC and Boulden sites. 

The relationship between the ECa measurements and zin observations was formed using 

the McNeill (1980b) cumulative response curves. The major assumptions of this model 

were a double-layered soil and a constant ECa of the upper and lower layers throughout 

the field. The cumulative response from the upper soil and the gravel substrate in 

blueberry fields can be computed as R(zin) and 1 – R(zin), respectively, for the horizontal 

and perpendicular arrays (Eqs. [1] and [2]). For every HCP and PRP measurement, the 

predicted zin (zin
*
) can be determined by solving a system of non-linear equations. 

Therefore, a C++ program was, written in Microsoft Visual Studio 2010 (Microsoft, 

Redmond, WA, USA) software, used given the conductivity values of the upper layer 

(ECa upper) and the gravel subsoil (ECa gravel) at North River and Carmel sites; and the 

unsaturated (ECa unsaturated) and saturated (ECa saturated) layer at BEEC and Boulden sites: 

HCP = [Rh (zin
*
)] ECa upper + [1 – Rh(zin

*
)] ECa gravel                    (3) 

PRP = [Rp (zin
*
)] ECa upper + [1 – Rp(zin

*
)] ECa gravel                     (4) 

HCP = [Rh (zin
*
)] ECa unsaturated + [1 – Rh(zin

*
)] ECa saturated           (5) 

PRP = [Rp (zin
*
)] ECa unsaturated + [1 – Rp(zin

*
)] ECa saturated            (6) 
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To fit these theoretical relationships to the zin-ECa data, the sum of the squared 

differences between zin and zin
*
 was minimized: 

∑[       
 ( )] 

 

   

                                              ( ) 

with n being the number of observations. The parameters ECa upper, ECa gravel, ECa unsaturated 

and ECa saturated were iteratively corrected to attain the smallest sum of the squared 

differences between zin and zin
*
. The obtained values of ECa upper and ECa gravel at North 

River Sites were 35.5 and 2.1 mS m
-1

 and at Carmel Site, these were 25.6 and 13.1       

mS m
-1

, respectively. Similarly, the obtained values of ECa unsaturated and ECa saturated at 

BEEC Site were 62.8 and 4.4 mS m
-1

, respectively and at Boulden site, 8.7 and 34.2     

mS m
-1

. So at each measurement point, HCP and PRP were related to zin
*
 by using Eq. 

(1), (2), (3), (4), (5) and (6) as 
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(    
       )

             (Boulden Site) 

This system was solved for zin
*
 with C++ program. 

An independent validation was accomplished to assess the predictive quality of this 

model. Two indicators were used as validation criteria: the mean error (ME) and the root 

mean square error (RMSE). The ME and RMSE were acquired from: 
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      √
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                         ( )             

with n representing the total number of validation observations. The observed depths 

were compared with the model predictions (Figures 5-2 to 5-5). A strong correlation 

between predicted and measured depths and RMSE (0.27 m, North River Site; 0.2 m, 

Carmel Site; 0.4 m, BEEC Site; and 0.5 m, Boulden Site) showed that this procedure was 

good enough in predicting zin
*
 in a very rapid and non-destructive way. 
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Figure 5-2 Scatter plot of predicted interface depth (zin

*
) vs. the measured depth (zin) 

at North River Site 

 

 

Figure 5-3 Scatter plot of predicted interface depth (zin
*
) vs. the measured depth (zin) 

at Carmel Site 
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Figure 5-4 Scatter plot of predicted interface depth (zin
*
) vs. the measured depth (zin) 

at BEEC Site 

 

 

Figure 5-5 Scatter plot of predicted interface depth (zin
*
) vs. the measured depth (zin) 

at Boulden Site 
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5.3.3 Construction of the Interface Depth 

The predicted interface depths (zin
*
) as produced by the DualEM-2 procedure were 

interpolated using kriging. Depths to interface surfaces (Figures 5-6 to 5-9), exhibited a 

strong variability of the interface between the upper layer and gravel layers, and the 

unsaturated and saturated layers. For plants, gravel or crystalline rock layer is often 

indicative of the rooting limit (Shenk, 2008) and this information is significant for 

determining the shape of a root system (Ganatsas and Spanos, 2005; Shenk and Jackson, 

2002), soil water availability and crop production potential. Therefore, it is important to 

detect the gravel layer in wild blueberry fields because if it is present in the root zone 

depth, it may affect and impede the rhizomes of the crop and may result in low yield due 

to less nutrient and moisture uptake through rhizomes (Eaton and Jensen, 1996). 

Microorganisms might also move from shallow gravel areas which also contribute to crop 

yield. As the gravel layer was more porous, the water after the rain may infiltrate very 

rapidly causing the plants in moisture stress. In this way, this gravel depth detection may 

be useful to improve wild blueberry production. 

The shallow gravel layer was generally observed in the high elevation areas while the 

deeper gravel layer was found in flat areas and low elevation areas of the wild blueberry 

fields. It might be due to soil erosion from high to low elevation parts of the fields. Visual 

observations revealed that blueberry plants were less dense with grasses and weeds in 

some areas of the fields having the shallow (0 to 15 cm) gravel depth. Similar 

observations were also reported by Eaton and Jensen (1996). Maps of yield, grasses and 

bare spots of North River Site were displayed side by side for comparison. These maps 

showed shallow gravel depth affect the blueberry yield (Figures 5-9 and 5-10) because of  
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Figure 5-6 Interface depth predicted by the DualEM-2 at North River Site 

 

  
Figure 5-7 Interface depth predicted by the DualEM-2 at Carmel Site 

 

the resistance to the root growth. It may cause fewer stems to flower and reduction in 

yield. Correlation coefficients also supported these maps. When the gravel layer reaches 

the soil surface due to soil erosion, develops the bare-spots. Gravel layer between 0-15 
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cm adversely affect fruit yield due to less density of plants within wild blueberry fields. 

The interpolated maps of actual and predicted gravel depths (Figures 5-6 and 5-7) 

showed substantial variation and almost similar patterns. The shallow gravel layer at 

North River site was found in southwest part of the field. The deeper gravel layer was 

observed in southeast and northwest region. The gravel depth maps at Carmel Site 

showed moderate variation. The shallow gravel layer was in north and center part of the 

field while deeper values were in south part of the field. The predicted WTD maps at 

BEEC and Boulden sites also indicated substantial variation in WTD. Actual and 

predicted maps were almost similar. The shallow WTD at BEEC Site was found in low 

lying areas (east and northeast region) of the field. Higher values of WTD were observed 

in high elevation areas (west and northwest region) of the field. Similar pattern was 

observed for Boulden Site with respect to elevation. 

  
Figure 5-8 Interface depth predicted by the DualEM-2 at BEEC Site 
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Figure 5-9 Interface depth predicted by the DualEM-2 at Boulden Site 

 

 
Figure 5-10 Yield, bare spots and grass maps of North River Site 

 

5.4 Conclusion 

The DualEM allowed prediction of depth to interface (zin) in a two-layered soil in a rapid, 

effective and non-destructive manner. With the DualEM-2, a number of soil auger 
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observations are required to calibrate the ECa measurements in respect to zin. The 

quadruple-array EMI instruments like DualEM-21S would be better to estimate zin 

because these sensors avoid the need for calibration augering and their rich information 

enables a quantification of zin with a good predictive accuracy. Additionally, these may 

provide inventories of the spatial variability in top and subsoil conductivity. 

In order to compute interface and water table depth within two-layered soil profile based 

on the theory of McNeill, (1980a), using the outputs of DualEM, this procedure was 

found efficient and rapid. It can also be used as real-time if some necessary modifications 

are made. Based on the results, it can be concluded that gravel layer in wild blueberry 

fields can be estimated and these may restrict infiltration influence the lateral movement 

of soil water and agrochemicals, and limit crop production if the gravels are present 

within root zone depth. In addition to other parameters that affect and contribute to 

blueberry yield, gravel layer is another important factor which can be considered along 

with various soil properties, fertilizers, herbicides, fungicides, etc. Mapping of variations 

in gravel layer and water table depths may be important components for crop production. 

EMI methods can provide large quantities of data in a relatively short period of time. 
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CHAPTER 6  ESTIMATION OF WATER TABLE DRAWDOWNS 

6.1 Introduction 

Large precipitation quantities not only produce extra flow in streams but also produce 

increases in soil moisture content, as well as rising groundwater tables, in areas not 

nearby to rivers or streams (Vazquez-Amábile and Engel, 2005). These influences are 

especially significant on flat areas, where the stream network is not always well defined 

and water surpluses are not quickly removed by runoff. These influences may create 

immediate damage. Rises in groundwater table can decrease the total yield of the 

watershed by lessening the farming area, influencing the growth process of the crops, and 

delaying or stopping field work (tillage, planting, and harvesting), and they can degrade 

the soil properties for the subsequent crop season (Pivot et al., 2002). Shallow water 

tables may affect growth due to inadequate aeration through the pores. The water table 

study can provide data on variation of the water table, the amount and path of movement 

of groundwater and a sign of water resources (Gundogdu and Degrimenci, 2006). In the 

long run, groundwater table rises may cause about soil salinization, depending on the 

groundwater quality. Salinization of soil and water is a mutual problem in arid and 

semiarid regions around the world (Ghassemi et al., 1995); its impact is felt in many 

agricultural provinces. Soil salinization reduces crop yields, increases runoff and soil 

erosion, and causes to desertification (Banin and Fish, 1995). Salinization pollutes 

surface water and groundwater supplies, limits irrigation, needs treatment for municipal 

and industrial uses, causes freshwater plants to be replaced by salt-tolerant ones, and 

influences recreational and commercial fisheries (Paine, 2003). Salt-affected land differs 

considerably spatially across the field and over the year in both levels of soil salinity and 
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water table depth (Bennett et al., 2009). Water table depths are nearest to the surface in 

winter and soil salinity levels are lowest at this time (Smith, 1962).  

There have been studies on ECa mapping as a tool for gauging the magnitude and spatial 

variability of soil salinity (Doolittle et al., 2001) and water table depths (Schumann and 

Zaman, 2003; Allred et al., 2005). A combination of topographic features and EMI data 

was used to map soil drainage classes (Kravchenko et al., 2002) and to define claypan 

soil management zones (Fraisse et al. 2001). Johnson et al. (2001) evaluated ECa 

mapping for delineating soil physical and chemical properties. Kachanoski et al. (1988) 

observed significant correlation among spatial variation of soil water content, soil 

solution electrical conductivity and ECa measured by EMI methods. Studies about the 

effects of shallow hydrology on ECa are relatively limited. Sheets and Hendrickx (1995) 

documented a positive linear relationship between ECa and moisture content. Khakural et 

al. (1998) found a positive linear relationship between ECa and soil profile water storage. 

Sudduth et al. (2001) concluded that soil moisture need to be considered when using ECa 

to estimate top soil depth. Therefore ECa can be affected by shallow hydrologic 

conditions (Allred et al., 2005). 

Specific field maps delineating water table depths can be utilized to support several field 

management systems.  Different management zones can be developed on the basis of 

variation in ECa, coupled with the geographic information system (GIS), for the site-

specific application of suitable fertilization to reduce input costs and environmental 

impacts, and increase productivity. In general, EMI can provide spatially comprehensive 

information about soil texture, and temporally consistent monitoring of moisture, 
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nutrients, salinity and water table depths (Schumann and Zaman, 2003; Eigenberg et al., 

2006).  

Knowledge of water table depth is a critical element in several hydrological studies, 

including agricultural salinity management, landfill characterization, chemical seepage 

movement, and water supply studies (Buchanan and Triantafilis, 2009). Water table depth 

measurements are inherently expensive and time consuming, particularly during the 

installation process, which requires drilling a well. Consequently, the number of 

measurements that are available in a given area is often relatively sparse and does not 

reveal the actual level of variation that may be present. 

The problem of sparse sampling data is not rare to water table studies. It is a subject that 

influences our capability to map the distribution of many natural resources where 

sampling is either costly or time consuming, including industrial pollutants and aquifer 

and soil properties (Buchanan and Triantafilis, 2009). Increasingly, researchers are 

dealing the issue by relating an inexpensive, high resolution ancillary data set to a limited 

set of calibration measurements. Using statistical techniques, it is then feasible to make 

high-resolution forecast of the property of interest. 

Today, there are numerous sources of relatively inexpensive ancillary data that might be 

helpful in predicting the water table depth. EMI techniques have been used widely in 

hydrological investigations but not generally as a direct predictor of water table depth. It 

is used more commonly to detect associated processes, such as deep drainage (Triantafilis 

et al., 2003, 2004), unsaturated flow characteristics (Scanlon et al., 1999), and recharge 

(Cook et al., 1992). The objective of this chapter was to test the DualEM-2 for estimating 
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the water table depths rapidly and assessing the variation in ECa readings recorded by the 

DualEM-2 affected due to the fluctuations of water table levels. 

6.2 Materials and Methods 

6.2.1 Study Area 

Two fields were selected (soybean-barley rotation and pasture) in central Nova Scotia, 

Canada to predict the water table depths in a non-destructive manner using EMI method. 

The soybean-barley field (Figure 6-1) was located at BEEC Site (2.78 ha; 45.38
o
N, 

63.23
o
W) and the pasture field (Figure 6-2) was at the Boulden Site (0.76 ha; 45.37

o
N, 

63.25
o
W). Both fields had tile drainage system. Soybean and barley were grown at BEEC 

in 2010 and 2011, respectively. Small cages were installed in Boulden Field for other on-

going experiment (Figure 6-2). The soil at BEEC Site is classified as coarse loamy, but 

half of this is an imperfect drained acidic soil, commonly known as “Debert   ” while a 

well-drained acidic soil exists on the other half of the site, commonly known as 

“Pugwash   ”. The soil at Boulden site is also classified as coarse loamy which is an 

imperfect drained acidic soil, commonly known as “Debert   ”   ebb and  angille, 

1996). The field boundary was mapped using Real time kinematics (RTK)-GPS (Topcon 

Positioning Systems Inc., Livermore, CA, USA). 

6.2.2 Water Table Measurements   

The EMI survey data, HCP and PRP, were utilized to develop an installation strategy of 

observation wells in BEEC Field. The gaussian models of semivariogram were found to 

best fit the HCP and PRP data. The grid size to install wells was then established on the 

basis of the range of influence from semivariogram which was found to be around 



80 
 

 
Figure 6-1 Field layout of BEEC Field, showing location of 30 observation wells and 

field boundary 

 
Figure 6-2 Field layout of Boulden Field, showing location of 30 observation wells 

and field boundary 
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50 m for BEEC Field (Figure 4-7). The grid pattern for sampling is one third or half of 

the range of influence (Kerry and Oliver, 2003). Therefore, a grid size of 20 x 20 m was 

set for installing wells at BEEC field. The wells were installed as an irregular grid at 

Boulden Field because it was very small field. i.e. almost one fourth of BEEC Field. 

Schumann and Zaman, (2003) also installed the wells as an irregular grid in one field and 

as regular in the other. Thirty water table observation wells were installed using an earth 

auger (Andreas Stihl AG & Co., Waiblingen, Germany) in each field. Each well was 

divided into two sections and they were coupled using threading. The joint was around 

30-40 cm below the soil surface (Figure 6-3). It was favorable during harvesting and 

other management practices of crop in the fields because only the upper section was 

removed before these operations and there was no need to install wells again in second 

year. A 5-cm diameter polyvinyl chloride (PVC) pipe, perforated with small holes in the 

lower section was installed, and its position was recorded using the RTK-GPS. The PVC 

wells had a nylon fabric filter material around the bottom end and a PVC end-cap over 

the top end of the pipe to prevent water or soil from entering.  

Measurements of water table depths and ECa were made from June to October, 2010 for 

three consecutive days after every significant rainfall event and then from May to 

October, 2011, one day before and three days after significant rainfall event to assess the 

rise and recession of water table levels. Three datasets were collected in each year. An 

acoustic water level sensor was used to measure water table depth (WTD) below soil 

surface. 
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Figure 6-3 Installation of wells 

 

6.2.3 Apparent Ground Conductivity Measurements 

6.2.3.1 Manual Data Collection 

ECa measurements were collected manually at each well when WTD were measured after 

every significant rainfall for three consecutive days to visualize the recession of water 

table level simultaneously. A DualEM-2 (DualEM, Milton, Ontario, Canada) instrument 

was used to measure ECa at ground level in both the horizontal coplanar (HCP) geometry 

and perpendicular (PRP) geometry (Figure 6-4). Five ECa values were sampled and 

averaged at each well location. 

6.2.3.2 EMI Surveys 

Intensive EMI surveys were conducted at each field with the DualEM-2 instrument in 

2010 and 2011. The instrument was hanged over the shoulders because the crop was tall 

during first year while during second year of study before sowing and after 
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Figure 6-4 Manual measurement of apparent ground conductivity at well location 

 

harvesting of barley, comprehensive ECa surveys were conducted in each field with the 

DualEM-2 instrument mounted on a sled behind an ATV at a speed of approximately      

5 km hr
-1

. The instrument was towed 5 m behind a four-wheel-drive vehicle equipped 

with a Garmin GPS18x LVC (Garmin International, Inc., Olathe, KS, USA) (Figure 6-5).  

Customized Windows software on a laptop computer was used to merge the ground 

conductivity (HCP and PRP) data with corresponding GPS position coordinates through 

RS232 ports, and these data were saved to the fixed hard disk. The HCP and PRP data 

were recorded automatically after every second during a survey. The lines of 5 m spacing 

were generated using ArcGIS 10 (ESRI, Redlands, CA) software and EMI surveys were 

guided by a RTK-GPS on those lines. At the end of each survey, WTD were measured 

manually in the field. These WTD were used to calibrate with the nearest HCP values 

collected during the survey, and the resulting calibration models were used to predict the 

WTD for each surveyed position in the field. 
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Figure 6-5 Automated DualEM Survey 

6.3 Statistical Analysis 

The data of 30 WTD of each field and the corresponding ECa were analyzed by 

regression with Minitab 16 statistical software to obtain calibration models for predicting 

WTD using ECa. Transformed, linear and logarithmic models of ECa were evaluated to 

find the best-fitting models to predict WTD. The performance of these models was 

verified through the coefficient of determination (R
2
) and root mean square error 

(RMSE). The RMSE represents the average deviation of actual WTD from the fitted 

regression model, in units of WTD (cm). The survey data files of HCP readings were 

imported into ArcGIS 10 software for mapping. The data surfaces were interpolated from 

the calculated WTD data using kriging. Means, minimums, maximums, skewness, 

kurtosis, standard deviations (SD) and coefficient of variations (CVs) of manually 

measured data for WTD and HCP were also calculated but it is not suitable to provide the 

spatial trend and, location of high and low values (Schumann and Zaman, 2003). 

Therefore, geo-statistical analysis was performed using GS+ Geostatistics using the 
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Environmental Sciences Version 9 software (Gamma Design Software, LLC, Woodhams 

St, Plainwell, MI) to characterize the WTD and ECa. The semivariogram were produced 

for every WTD and ECa data before and after rainfall to attain the degree of spatial 

variability between the observations. 

6.4 Results and Discussion 

The Anderson-Darling (A-D) normality test at a significance level of 5% using Minitab 

software (Farooque, 2010), of WTD and HCP data suggested that all parameters were 

normally distributed (p>0.05) except WTD of 2
nd

 and 3
rd

 data set in 2010 and 3
rd

 data set 

in 2011 for BEEC site. WTD for all three data set were not normally distributed (p<0.05) 

for Boulden site in 2010 while in 2011, WTD measured on May 8
th

, June 16
th

, August 3
rd

 

and 4
th

 were not normally distributed but all HCP data were normally distributed in both 

years. The reason for normal and non-normal distributions of some WTD data at both 

fields is unknown, but precipitation, temporal effects and management practices may be 

the real causes (Farooque et al., 2012). 

The descriptive statistics for both BEEC and Boulden Sites for both years is reported in 

Tables 6-1 and 6-2. It is reported by Wilding (1985), if the CV < 15%, soil properties are 

least variable, 15 to 35% indicates moderate variability and CV > 35% suggests most 

variable. Summary statistics showed that both WTD and HCP had high CVs showing 

high variability at BEEC Site. The WTD data were moderate to highly variable at 

Boulden Site in both years while the HCP data were moderately and least variable in 

2010 and 2011, respectively. Mean values of WTD were observed lower in 2010 for 

BEEC Site as compared in 2011. This may be due to more precipitation (heavy rainfall) 

in 2010 (Figure 6-6). In Boulden Field, mean WTD were observed higher in 2010 in 



86 
 

comparison with 2011 mean WTD data. Sophocleous (1991) indicated that the water 

table fluctuations could be misleading if these fluctuations are confused with those 

resulting from pumping, drainage and other causes. The reason behind this may be that 

Boulden Field has control drainage system while BEEC field has no control drainage 

system. In this study, water collection data by drainage systems were not recorded. 

 
Figure 6-6 Total monthly precipitation (mm) during data collection period  

(Source: http://www.climate.weatheroffice.gc.ca/climateData/) 

 

The HCP component was used to correlate with water table depth because of the greater 

sensitivity of this component in deeper layers of soil (Schumann and Zaman, 2003). 

Correlations between WTD and HCP in both fields were highly significant (BEEC: R2 = 

0.76 to 0.93, Boulden: R2 = 0.58 to 0.85) (Tables 6-3 and 6-4). Data could only be 

collected from 29 wells in BEEC field for first and third data set because the 
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Table 6-1 Descriptive statistics for BEEC and Boulden fields (2010) 

Field Variables Date Min. Max. Mean CV 

(%) 

Skewness 

 

 

 

 

 

 

 

 

 

BEEC 

 

 

WTD 

from 

ground 

surface 

(cm) 

Jun 29
a 

Jun 30 

Jul 01 

10.0 

17.0 

20.0 

183.0 

193.0 

196.0 

68.9 

78.2 

82.5 

69.8 

60.2 

55.6 

0.7 

0.7 

0.7 

Jul 13
b 

Jul 14 

Jul 15 

1.0 

8.5 

12.0 

130.5 

147.5 

159.0 

37.6 

49.1 

57.1 

96.4 

73.2 

63.3 

1.3 

1.2 

1.1 

Oct 17
c 

Oct 18 

Oct 19 

3.0 

9.0 

19.0 

172.0 

182.0 

193.0 

58.0 

69.3 

79.3 

93.5 

74.7 

61.8 

0.9 

0.8 

0.8 

 

 

 

HCP 

(mS/m) 

Jun 29
a 

Jun 30 

Jul 01 

7.7 

6.6 

6.4 

39.8 

38.4 

37.9 

24.0 

20.8 

18.8 

40.5 

43.3 

45.1 

0.1 

0.5 

0.6 

Jul 13
b 

Jul 14 

Jul 15 

7.6 

7.2 

6.5 

41.5 

40.4 

38.8 

23.9 

20.3 

17.6 

43.6 

48.7 

50.2 

0.1 

0.6 

0.8 

Oct 17
c 

Oct 18 

Oct 19 

6.9 

6.5 

6.1 

42.4 

40.9 

38.7 

23.4 

21.8 

21.0 

43.5 

47.0 

47.6 

0.2 

0.4 

0.2 

 

 

 

 

 

 

 

 

 

Boulden 

 

 

WTD 

from 

ground 

surface 

(cm) 

Jun 29
a 

Jun 30 

Jul 01 

77.0 

83.0 

84.5 

188.0 

189.0 

192.0 

110.8 

115.7 

119.6 

31.9 

29.1 

27.4 

1.2 

1.2 

1.2 

Jul 13
b 

Jul 14 

Jul 15 

1.0 

25.5 

49.0 

172.0 

174.5 

178.0 

61.0 

76.3 

92.4 

83.3 

59.7 

42.4 

1.1 

1.1 

1.0 

Oct 17
c 

Oct 18 

Oct 19 

90.0 

91.0 

97.0 

222.0 

223.0 

224.0 

131.2 

138.2 

143.6 

32.8 

29.1 

26.7 

1.0 

1.0 

1.0 

 

 

 

HCP 

(mS/m) 

Jun 29
a 

Jun 30 

Jul 01 

13.0 

12.3 

11.1 

28.4 

28.0 

25.7 

21.6 

20.1 

18.3 

21.6 

23.0 

22.9 

-0.3 

-0.1 

-0.1 

Jul 13
b 

Jul 14 

Jul 15 

15.7 

14.4 

13.2 

32.3 

30.5 

28.6 

24.4 

22.2 

20.7 

19.6 

18.6 

20.2 

-0.1 

-0.3 

-0.2 

Oct 17
c 

Oct 18 

Oct 19 

13.6 

12.5 

11.7 

33.1 

32.4 

31.2 

23.1 

21.6 

20.0 

21.6 

23.1 

21.8 

0.0 

0.4 

0.6 
a, 39.2 mm precipitation; b, 42.4 mm precipitation; c, 44.7 mm precipitation 
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Table 6-2 Descriptive statistics for BEEC and Boulden fields (2011) 

Field Variables Date Rain Min. Max. Mean CV 

(%) 

Skewness 

 

 

 

 

 

 

 

 

 

 

 

 

BEEC 

 

 

 

 

WTD 

from 

ground 

surface 

(cm) 

May 08 

May 10 

May 11 

May 12 

Before
a 

After 

After 

After 

27.9 

16.2 

22.2 

25.3 

209.4 

208.0 

209.0 

209.4 

106.5 

94.6 

99.8 

104.6 

50.9 

61.5 

55.8 

51.8 

0.3 

0.3 

0.3 

0.3 

Jun 14 

Jun 16 

Jun 17 

Jun 18 

Before
b 

After 

After 

After 

48.8 

26.7 

39.1 

45.5 

210.4 

194.4 

199.3 

208.2 

113.4 

97.8 

104.7 

111.4 

44.0 

51.9 

46.9 

45.4 

0.4 

0.4 

0.4 

0.4 

Aug 01 

Aug 03 

Aug 04 

Aug 05 

Before
c 

After 

After 

After 

31.6 

0.0 

13.7 

28.4 

187.2 

178.4 

180.2 

184.4 

88.3 

63.7 

76.0 

85.5 

54.8 

88.0 

68.0 

56.8 

0.7 

0.8 

0.7 

0.6 

 

 

 

 

HCP 

(mS/m) 

May 08 

May 10 

May 11 

May 12 

Before
a 

After 

After 

After 

5.8  

7.1 

6.6  

6.4  

35.7 

37.5 

36.8 

36.5 

20.0 

21.5 

21.0 

20.3 

45.4 

42.4 

42.9 

43.9 

0.2 

0.2 

0.2 

0.2 

Jun 14 

Jun 16 

Jun 17 

Jun 18 

Before
b 

After 

After 

After 

6.5  

7.1  

6.8  

6.4  

33.7 

35.6 

34.8 

34.2 

19.7 

21.2 

21.0 

19.9 

41.2 

40.2 

39.2 

41.3 

0.2 

0.2 

0.2 

0.2 

Aug 01 

Aug 03 

Aug 04 

Aug 05 

Before
c 

After 

After 

After 

8.4  

10.3 

9.5 

8.4 

42.7 

43.4 

42.1 

41.8 

23.7 

24.8 

23.9 

23.0 

42.9 

40.5 

42.0 

43.3 

0.2 

0.3 

0.2 

0.2 

 

 

 

 

 

 

 

 

 

 

 

Boulden 

 

 

 

 

WTD 

from 

ground 

surface 

(cm) 

May 08 

May 10 

May 11 

May 12 

Before
a 

After 

After 

After 

36.5  

0.0  

17.0  

26.2  

119.0 

95.1 

98.0 

106.8 

65.8 

43.3 

53.3 

62.1 

34.4 

65.5 

45.3 

34.7 

1.1 

0.3 

0.4 

0.6 

Jun 14 

Jun 16 

Jun 17 

Jun 18 

Before
b 

After 

After 

After 

31.1  

0.0  

0.0  

26.7  

124.3 

102.1 

112.2 

121.1 

73.0 

36.2 

52.0 

70.3 

34.6 

91.6 

62.8 

36.9 

0.6 

0.6 

0.2 

0.4 

Aug 01 

Aug 03 

Aug 04 

Aug 05 

Before
c 

After 

After 

After 

14.6  

0.0  

7.0  

13.3  

95.5 

88.3 

91.3 

93.8 

50.3 

30.6 

40.9 

49.2 

47.6 

97.9 

64.0 

47.8 

0.4 

0.6 

0.5 

0.4 

 

HCP 

(mS/m) 

May 08 

May 10 

May 11 

May 12 

Before
a 

After 

After 

After 

14.9  

15.6  

15.4  

15.2  

25.3 

26.0 

25.5 

25.4 

20.2 

21.9 

20.9 

20.7 

13.5 

12.6 

12.4 

12.7 

0.1 

-0.5 

-0.1 

-0.1 
a, 22.7 mm precipitation; b, 22.1 mm precipitation; c, 30.9 mm precipitation 
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Field Variables Date Rain Min. Max. Mean CV 

(%) 

Skewness 

 

 

 

Boulden 

 

 

 

HCP 

(mS/m) 

Jun 14 

Jun 16 

Jun 17 

Jun 18 

Before
b 

After 

After 

After 

14.9  

16.0  

15.8  

15.1  

26.2 

26.9 

24.2 

22.5 

19.4 

21.9 

19.6 

18.7 

13.8 

13.4 

13.0 

11.8 

0.6 

-0.3 

0.2 

0.1 

Aug 01 

Aug 03 

Aug 04 

Aug 05 

Before
c 

After 

After 

After 

15.3  

16.6  

15.0  

14.3  

23.9 

24.7 

24.6 

23.4 

19.9 

21.9 

20.3 

19.4 

11.4 

11.0 

11.8 

11.2 

0.2 

-0.8 

-0.4 

-0.4 
a, 22.7 mm precipitation; b, 22.1 mm precipitation; c, 30.9 mm precipitation 

 

WTD was below than 195-cm depth of a well and this well was located at highest 

elevation of the field while the data were collected from all wells in Boulden field in 

2010. In the next year, data were collected from 26 to 29 wells at BEEC site (Table 6-4) 

because of less precipitation and those wells were installed at high elevation areas but at 

Boulden site, there were only 27 wells (Table 6-4). A logarithmic regression resulted in a 

slightly better fit than a linear regression in both fields, probably due to non-linear 

response of the instrument as indicated by Schumann and Zaman (2003). The accuracy of 

the regression models to predict WTD in both fields was calculated by RMSE and ranged 

from 12.50 to 22.00 cm for BEEC field and 11.20 to 22.10 cm  for Boulden field over 

different dates (Table 6-3; Figure 6-5 and Table 6-4; Figure 6-6). These RMSE values 

were less than the RMSE values found by Coulibaly et al., 2001; Daliakopoulos et al., 

2005; Vasquez-Amabile and Engel, 2005; Krishna et al., 2008 and Sethi et al., 2010. 

Based upon the results of the study, EMI was considered reasonable considering that the 

technique has the enormous advantages of being non-destructive and very rapid response, 

and it could be used to assess the spatial trend of water table depth. 
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Table 6-3 Regression equations for predicting WTD from HCP (2010) 

BEEC 

Date Equation n R
2
 RMSE (cm) 

June 29 

June 30 

July 01 

WTD = 357.1 – 215.2 log (HCP) 

WTD = 363.4 – 223.4 log (HCP) 

WTD = 333.4 – 204.2 log (HCP) 

29 

29 

29 

0.81 

0.93 

0.90 

20.6 

12.5 

14.5 

July 13 

July 14 

July 15 

WTD = 235 – 148.3 log (HCP) 

WTD = 229.3 – 143.5 log (HCP) 

WTD = 226.3 – 141.9 log (HCP) 

30 

30 

30 

0.80 

0.76 

0.76 

15.7 

17.2 

17.3 

Oct 17 

Oct 18 

Oct 19 

WTD = 378 – 241.8 log (HCP) 

WTD = 345.1 – 214.4 log (HCP) 

WTD = 316 – 186.9 log (HCP)  

29 

29 

29 

0.88 

0.89 

0.79 

18.2 

17.1 

22.0 

Boulden 

Date Equation n R
2
 RMSE (cm) 

June 29 

June 30 

July 01 

WTD = 528.8 – 315.8 log (HCP) 

WTD = 479.3 – 281.5 log (HCP) 

WTD = 469.5 – 279.8 log (HCP) 

30 

30 

30 

0.81 

0.77 

0.80 

15.1 

15.8 

14.2 

July 13 

July 14 

July 15 

WTD = 789.6 – 528.5 log (HCP) 

WTD = 731.7 – 489.3 log (HCP) 

WTD = 568.2 – 364.1 log (HCP) 

30 

30 

30 

0.85 

0.83 

0.75 

19.0 

18.2 

19.2 

Oct 17 

Oct 18 

Oct 19 

WTD = 634.6 – 372.1 log (HCP) 

WTD = 572.9 – 328.4 log (HCP) 

WTD = 580 – 337.8 log (HCP) 

30 

30 

30 

0.72 

0.69 

0.70 

22.2 

21.9 

20.5 

 

The R
2
 range indicates that WTD account for 76 to 93% of ECa variation in BEEC and 58 

to 85% in Boulden Field. It suggested that factors other than WTD may have some effect 

on the ECa of these fields and these other factors must be soil properties (Allred et al., 

2005). It may also expected that with a low WTD, values of ECa can be high or low 

based on moisture conditions in unsaturated soil above water table as described by Allred 

et al. (2005). HCP explained seventy-one percent of variation in WTD during the all six 

datasets in BEEC field (n = 598; R
2
 = 0.71; p < 0.01) (Figure 6-7) while this variation 

was fifty-three percent in WTD in Boulden field (n = 600; R
2
 = 0.53; p < 0.01) (Figure 6-

8). 
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Table 6-4 Regression equations for predicting WTD from HCP (2011) 

BEEC 

Date Equation n R
2
 RMSE (cm) 

May 08 

May 10 

May 11 

May 12 

WTD = 379.2 – 218.2 log(HCP) 

WTD = 432.3 – 262.0 log (HCP) 

WTD = 402.3 – 237.0 log (HCP) 

WTD = 392.9 – 228.7 log (HCP) 

28 

29 

28 

28 

0.84 

0.87 

0.84 

0.84 

20.7 

20.0 

21.4 

20.8 

Jun 14 

Jun 16 

Jun 17 

Jun 18 

WTD = 406.8 – 234.0 log(HCP) 

WTD = 403.8 – 237.9 log (HCP) 

WTD = 413.6 – 240.3 log (HCP) 

WTD = 407.3 – 234.8 log (HCP) 

26 

27 

26 

26 

0.86 

0.85 

0.85 

0.84 

18.3 

18.8 

18.2 

19.5 

Aug 01 

Aug 03 

Aug 04 

Aug 05 

WTD = 380.9 – 219.7 log(HCP) 

WTD = 435.3 – 273.8 log (HCP) 

WTD = 401.1 – 243.2 log (HCP) 

WTD = 374.6 – 219.4 log (HCP) 

29 

29 

29 

29 

0.86 

0.85 

0.87 

0.86 

18.2 

20.9 

18.0 

17.6 

Boulden 

Date Equation n R
2
 RMSE (cm) 

May 08 

May 10 

May 11 

May 12 

WTD = 476.6 – 315.6 log(HCP) 

WTD = 596.1 – 413.3 log (HCP) 

WTD = 526.8 – 359.4 log (HCP) 

WTD = 479.0 – 317.9 log (HCP) 

27 

28 

27 

27 

0.69 

0.68 

0.67 

0.69 

11.9 

15.2 

13.1 

11.2 

Jun 14 

Jun 16 

Jun 17 

Jun 18 

WTD = 501.2 – 333.4 log(HCP) 

WTD = 688.2 – 487.6 log (HCP) 

WTD = 693.2 – 497.9 log (HCP) 

WTD = 614.1 – 428.8 log (HCP) 

27 

30 

28 

27 

0.61 

0.78 

0.75 

0.73 

15.1 

14.9 

15.5 

12.8 

Aug 01 

Aug 03 

Aug 04 

Aug 05 

WTD = 554.5 – 389.3 log(HCP) 

WTD = 709.1 – 507.3 log (HCP) 

WTD = 555.6 – 394.5 log (HCP) 

WTD = 506.7 – 356.0 log (HCP) 

27 

28 

27 

27 

0.65 

0.72 

0.65 

0.58 

13.4 

15.0 

14.8 

14.5 
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Figure 6-7 Regression curves developed for predicting water table depth from HCP 

(2010; a, b, c) and (2011; d, e, f) in the BEEC Field. Regression equations 

are in Tables 3 and 4. 
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Figure 6-8 Regression curves developed for predicting water table depth from HCP 

(2010; a, b, c) and (2011; d, e, f) in the Boulden Field. Regression 

equations are in Tables 3 and 4. 
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Figure 6-9 Validation of the regression model for DualEM-2 at BEEC Site 

 

 

 

Figure 6-10 Validation of the regression model for DualEM-2 at Boulden Site 

 

Geo-statistical analysis was performed to generate semivariogram in order to observe the 

spatial variation in WTD and HCP. In BEEC Site; gaussian, spherical and linear models 

were found best fit with the data (Tables 6-5 and 6-6). The best fitted  
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Table 6-5 Semivariogram of WTD and HCP (2010) 

BEEC 

Parameter Date Nugget Sill Range 

(m) 

Nugget 

Sill 

ratio 

R
2
 Model 

 

 

 

 

WTD 

June 29 

June 30 

July 01 

640.0 

408.0 

28.0 

4018 

3459 

3133 

66.6 

55.9 

48.6 

15.9 

11.8 

0.9 

0.98 

0.99 

0.98 

Gaussian 

Gaussian 

Gaussian 

July 13 

July 14 

July 15 

1.0 

180.0 

132.0 

2782 

2702 

2581 

43.3 

45.9 

44.7 

0.1 

6.3 

5.1 

0.98 

0.98 

0.98 

Gaussian 

Gaussian 

Gaussian 

Oct 17 

Oct 18 

Oct 19 

40.0 

1.0 

1.0 

2264 

2106 

2090 

41.6 

40.1 

40.2 

1.8 

0.1 

0.1 

0.95 

0.96 

0.96 

Gaussian 

Gaussian 

Gaussian 

 

 

 

 

HCP 

June 29 

June 30 

July 01 

0.1 

15.0 

10.0 

138 

124 

121 

112.7 

48.1 

46.5 

0.1 

11.9 

8.2 

0.99 

0.99 

0.98 

Spherical 

Gaussian 

Gaussian 

July 13 

July 14 

July 15 

0.1 

4.5 

3.8 

201 

153 

144 

105.2 

52.8 

51.6 

0.1 

2.9 

2.6 

0.97 

0.96 

0.96 

Linear 

Gaussian 

Gaussian 

Oct 17 

Oct 18 

Oct 19 

0.1 

0.1 

0.1 

201 

201 

161 

143.5 

142.2 

154.0 

0.1 

0.1 

0.1 

0.98 

0.99 

0.98 

Linear 

Linear 

Spherical 

Boulden 

Parameter Date Nugget Sill Range 

(m) 

Nugget 

Sill 

ratio 

R
2
 Model 

 

 

 

 

WTD 

June 29 

June 30 

July 01 

33.00 

1.00 

1.00 

1021 

898 

871 

15.5 

31.8 

12.9 

3.2 

0.1 

0.1 

0.70 

0.66 

0.62 

Gaussian 

Spherical 

Gaussian 

July 13 

July 14 

July 15 

1.00 

1.00 

1.00 

1992 

1724 

1189 

16.3 

17.2 

15.8 

0.1 

0.1 

0.1 

0.80 

0.82 

0.79 

Gaussian 

Gaussian 

Gaussian 

Oct 17 

Oct 18 

Oct 19 

925.00 

1.00 

997.10 

1961 

1094 

997 

62.9 

8.9 

40.9 

47.2 

0.1 

100.0 

0.16 

0.00 

0.01 

Exponential 

Spherical 

Linear 

 

 

 

 

HCP 

June 29 

June 30 

July 01 

0.01 

0.01 

0.01 

17 

17 

21 

15.9 

19.0 

56.5 

0.1 

0.1 

0.1 

0.70 

0.51 

0.85 

Gaussian 

Exponential 

Linear 

July 13 

July 14 

July 15 

0.01 

0.01 

0.01 

25 

20 

18 

22.2 

20.1 

18.5 

0.1 

0.1 

0.1 

0.90 

0.72 

0.84 

Gaussian 

Gaussian 

Gaussian 

Oct 17 

Oct 18 

Oct 19 

17.30 

5.04 

8.02 

19 

28 

33 

40.9 

69.1 

59.9 

89.6 

18.0 

24.0 

0.02 

0.61 

0.57 

Linear 

Spherical 

Gaussian 
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semivariogram models for Boulden Site were linear, gaussian, spherical and exponential. 

The semivariogram parameters (nugget, sill and range) describe the best spatial structure 

of variogram uses the R
2
 to select the best model. 

A variable has weak spatial dependency if the ratio is greater than 75%, moderate spatial 

dependency if the ratio is between 25 and 75%, and strong spatial dependency for a ratio 

less than 25% (Cambardella et al., 1994). Semivariogram of WTD and HCP in both years 

for BEEC Site indicated strong spatial dependence except 2
nd

 data set of WTD in 2011 

(Tables 6-5 and 6-6). Intrinsic soil properties such as texture, mineralogy and 

microorganisms may control strong spatial dependent variable. Semivariogram of WTD 

and HCP in 2010 and 2011 for Boulden Site indicated strong spatial dependency except 

for WTD on Oct 17th and 19th in 2010 and for HCP on Oct 17th, 2010 (Tables 6-5 and 

6-6). Weak to moderate spatial dependent variables may be controlled by extrinsic 

properties such as weather conditions, topography and farming practices. 

The semivariogram range of influence of WTD (40.10 to 125.7 m) and HCP (46.50 to 

154.0 m) showed moderate variation within BEEC Field in both years (Tables 6-5 and 6-

6) and these ranges were somewhat consistent during different time of observations. High 

variability was observed at Boulden Site for WTD and HCP in both years as the average 

range of influence for WTD was 20.74 m and 34 m, respectively (Tables 6-5 and 6-6).  
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Table 6-6 Semivariogram of WTD and HCP (2011) 

BEEC 

Parameter Date Nugget Sill Range 

(m) 

Nugget 

Sill 

ratio 

R
2
 Model 

 

 

 

 

 

 

WTD 

May 08 

May 10 

May 11 

May 12 

250.0 

1560.0 

1360.0 

180.0 

4930 

7230 

5425 

4897 

125.7 

76.7 

69.8 

123.6 

5.07 

21.58 

25.07 

3.68 

0.96 

0.94 

0.94 

0.96 

Spherical 

Gaussian 

Gaussian 

Spherical 

Jun 14 

Jun 16 

Jun 17 

Jun 18 

1281.0 

1476.0 

1374.0 

1295.0 

3699 

4211 

3666 

3723 

44.20 

63.0 

51.9 

45.0 

34.63 

35.05 

37.48 

34.78 

0.95 

0.89 

0.94 

0.95 

Gaussian 

Gaussian 

Gaussian 

Gaussian 

Aug 01 

Aug 03 

Aug 04 

Aug 05 

850.0 

1310.0 

1140.0 

830.0 

4810 

6730 

6390 

4770 

76.1 

90.6 

91.5 

75.1 

17.67 

19.46 

17.84 

17.40 

0.96 

0.96 

0.94 

0.96 

Gaussian 

Gaussian 

Gaussian 

Gaussian 

 

 

 

 

 

 

HCP 

May 08 

May 10 

May 11 

May 12 

5.9 

5.2 

5.1 

4.0 

125 

129 

128 

120 

57.1 

56.9 

57.8 

54.8 

4.72 

4.03 

3.98 

3.33 

0.98 

0.98 

0.98 

0.98 

Gaussian 

Gaussian 

Gaussian 

Gaussian 

Jun 14 

Jun 16 

Jun 17 

Jun 18 

2.2 

5.1 

5.1 

5.1 

110 

113 

109 

106 

54.5 

56.4 

55.0 

53.70 

1.99 

4.49 

4.65 

4.81 

0.97 

0.97 

0.97 

0.98 

Gaussian 

Gaussian 

Gaussian 

Gaussian 

Aug 01 

Aug 03 

Aug 04 

Aug 05 

6.1 

6.8 

7.7 

6.4 

162 

163 

162 

158 

58.1 

57.9 

58.4 

58.2 

3.76 

4.17 

4.73 

4.05 

0.98 

0.98 

0.98 

0.98 

Gaussian 

Gaussian 

Gaussian 

Gaussian 

Boulden 

Parameter Date Nugget Sill Range 

(m) 

Nugget 

Sill 

ratio 

R
2
 Model 

 

 

 

 

 

 

WTD 

May 08 

May 10 

May 11 

May 12 

0.10 

41.00 

15.30 

0.10 

254 

474 

317 

239 

17.4 

23.5 

17.4 

16.4 

0.04 

8.65 

4.82 

0.04 

0.97 

0.88 

0.89 

0.89 

Gaussian 

Gaussian 

Gaussian 

Gaussian 

Jun 14 

Jun 16 

Jun 17 

Jun 18 

0.10 

57.00 

1.00 

1.00 

314 

626 

513 

320 

15.3 

13.9 

12.1 

14.0 

0.03 

9.10 

0.19 

0.31 

0.86 

0.92 

0.68 

0.80 

Gaussian 

Gaussian 

Gaussian 

Gaussian 

Aug 01 

Aug 03 

Aug 04 

Aug 05 

11.10 

13.00 

8.00 

15.80 

306 

540 

401 

295 

16.2 

25.0 

24.0 

17.4 

3.62 

2.40 

1.99 

5.35 

0.90 

0.98 

0.97 

0.86 

Gaussian 

Gaussian 

Gaussian 

Gaussian 
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Parameter Date Nugget Sill Range 

(m) 

Nugget 

Sill ratio 

R
2
 Model 

 

 

 

 

 

HCP 

May 08 

May 10 

May 11 

May 12 

1.22 

1.28 

2.12 

2.34 

19 

18 

20 

21 

29.4 

28.8 

33.5 

34.8 

6.37 

6.93 

10.50 

11.10 

0.86 

0.83 

0.84 

0.85 

Gaussian 

Gaussian 

Gaussian 

Gaussian 

Jun 14 

Jun 16 

Jun 17 

Jun 18 

0.01 

0.86 

0.01 

0.72 

21 

18 

22 

22 

66.5 

20.5 

20.9 

21.9 

0.05 

4.64 

0.04 

3.14 

0.92 

0.92 

0.95 

0.96 

Spherical 

Gaussian 

Gaussian 

Gaussian 

Aug 01 

Aug 03 

Aug 04 

Aug 05 

2.32 

2.85 

3.80 

3.66 

18 

21 

21 

22 

29.8 

33.0 

35.9 

36.7 

12.30 

13.50 

18.00 

16.30 

0.82 

0.79 

0.76 

0.81 

Gaussian 

Gaussian 

Gaussian 

Gaussian 

 

Comprehensive EMI surveys were conducted in both fields. DualEM-2 survey collected 

1022 geo-referenced HCP values, by walk, taking 28 min to complete the survey of 2.78 

ha field. After interpolation, a continuous WTD surface was mapped for entire field 

(Figure 6-9). Interpolation process removed most of the erroneous data (Schumann and 

Zaman, 2003). WTD ranged from 10 to 160 cm on 1
st
 July (Figure 6-9). The shallow 

WTD was observed in the north-east side of the field because this area has lower 

elevation and ECa values were also higher in this region. The area located at high 

elevation zone showed higher values of WTD towards west in the maps. Most of the area 

had shallow WTD below than 100 cm. The WTD agree with the survey results but there 

are still some spatial variations in WTD (Figure 6-9), probably due to number of wells 

installed in the field and the area might not be well represented by the number of wells. 

A comparison of the WTD map for BEEC field developed from the manual measurement 

of 30 wells (1
st
 July; Figure 6-9) showed a high resolution for using EMI technique. Most 

of the within-soil type variation in WTD is lost due to the large separation between wells 
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during manual measurements where 30 wells were 20 m apart. In comparison, EMI 

provided a better than 3-m resolution. 

  
Figure 6-11 Interpolated water table depths in the BEEC Field 

 

  

Figure 6-12 Interpolated water table depths in the Boulden Field 
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6.5 Conclusion 

ECa mapping is a useful tool in precision agriculture as measurement of WTD was rapid 

and non-destructive. HCP component of DualEM-2 instrument was better to estimate 

WTD because of greater sensing depth. The performance of the DualEM-2 in predicting 

groundwater table depth was not as good as for drainage purposes. However, the 

instrument was able to predict seasonal variation/ oscillations and spatial distribution of 

the ground water table over time, with R
2
 that varied from 0.76 to 0.93 in BEEC Site and 

from 0.58 to 0.85 in Boulden Site. Underlying drainage designs and lack of 

evapotranspiration data were identified as the source of error in predicting the ground 

water table. This study is suitable when the focus is the quantity and quality of the water 

that flows through the streams of the watershed. Engineers, who design flood control 

structures, researchers and technicians who deal with environmental pollution carry out 

their analysis from this perspective. However, if soil moisture, water table depth, and 

suitability with a greater accuracy for farm activities throughout the year are of interest, 

perhaps new types of analysis with a lot of data are needed to generate appropriate 

outputs. Based on the above results, it is concluded that EMI is a useful tool to estimate 

and map water table depths in a rapid and non-intrusive manner.  
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CHAPTER 7  CONCLUSIONS AND RECOMMENDATIONS 

Based on the results, it was concluded that electromagnetic induction (EMI) methods 

provide the opportunity of obtaining high resolution apparent electrical conductivity 

(ECa) data across a field that can be related with soil properties, such as soil texture, 

moisture content, organic matter, electrical conductivity and pH, and depths to the gravel 

and water table depths, and can identify variations in subsurface soil profile and lateral 

movement of shallow ground water. Several factors influence ECa measurements 

including moisture content, soil salinity, porosity, soil structure, temperature, clay 

content, mineralogy, cation exchange capacity, and bulk density. EMI is a technique 

which is suitable for field scale measurement due to its rapid response, ease of integration 

into mobile platforms, and non-destructive and non-contact nature. 

The study can be used to develop sampling schemes, especially in untouched 

environments, by delivering an extra layer of information on soil variability and defining 

locations where minimum or maximum variation occurs. This information can be very 

useful for the possible location of monitoring equipment and sensors for observing soil 

hydrological processes in situ. 

The results showed that estimation of depth to gravel layer in wild blueberry fields may 

be an important factor in addition to pruning, pollination by bees, weeds and insect 

management practices, fertilizers etc. because shallow gravel depth (0-15 cm) areas in the 

field showed zero or less blueberry yield accompanying grasses and bare patches. 

It was also concluded that EMI mapping provide information that can improve the quality 

and resolution of spatially-detailed soil and water table maps that are used in hydrology, 

environment, and agriculture. Such spatially-detailed maps can be useful in studying the 
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inconsistency between measured and model predictions, where mean values used for soil 

parameters and water table depths can lead to large deviations. EMI methods can also be 

used to see the fluctuations in water table depths after rainfall event and spatial trend of 

water table depth can be visualized for a large area. 
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